Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Checking a member exists, possibly in a base class, C++11 version

In https://stackoverflow.com/a/1967183/134841, a solution is provided for statically checking whether a member exists, possibly in a subclass of a type:

template <typename Type> 
class has_resize_method
{ 
   class yes { char m;}; 
   class no { yes m[2];}; 
   struct BaseMixin 
   { 
     void resize(int){} 
   }; 
   struct Base : public Type, public BaseMixin {}; 
   template <typename T, T t>  class Helper{}; 
   template <typename U> 
   static no deduce(U*, Helper<void (BaseMixin::*)(), &U::foo>* = 0); 
   static yes deduce(...); 
public: 
   static const bool result = sizeof(yes) == sizeof(deduce((Base*)(0))); 
};

However, it doesn't work on C++11 final classes, because it inherits from the class under test, which final prevents.

OTOH, this one:

template <typename C>
struct has_reserve_method {
private:
    struct No {};
    struct Yes { No no[2]; };
    template <typename T, typename I, void(T::*)(I) > struct sfinae {};
    template <typename T> static No  check( ... );
    template <typename T> static Yes check( sfinae<T,int,   &T::reserve> * );
    template <typename T> static Yes check( sfinae<T,size_t,&T::reserve> * );
public:
    static const bool value = sizeof( check<C>(0) ) == sizeof( Yes ) ;
};

fails to find the reserve(int/size_t) method in baseclasses.

Is there an implementation of this metafunction that both finds reserved() in baseclasses of T and still works if T is final?

like image 736
Marc Mutz - mmutz Avatar asked Mar 02 '12 09:03

Marc Mutz - mmutz


2 Answers

Actually, things got much easier in C++11 thanks to the decltype and late return bindings machinery.

Now, it's just simpler to use methods to test this:

// Culled by SFINAE if reserve does not exist or is not accessible
template <typename T>
constexpr auto has_reserve_method(T& t) -> decltype(t.reserve(0), bool()) {
  return true;
}

// Used as fallback when SFINAE culls the template method
constexpr bool has_reserve_method(...) { return false; }

You can then use this in a class for example:

template <typename T, bool b>
struct Reserver {
  static void apply(T& t, size_t n) { t.reserve(n); }
};

template <typename T>
struct Reserver <T, false> {
  static void apply(T& t, size_t n) {}
};

And you use it so:

template <typename T>
bool reserve(T& t, size_t n) {
  Reserver<T, has_reserve_method(t)>::apply(t, n);
  return has_reserve_method(t);
}

Or you can choose a enable_if method:

template <typename T>
auto reserve(T& t, size_t n) -> typename std::enable_if<has_reserve_method(t), bool>::type {
  t.reserve(n);
  return true;
}

template <typename T>
auto reserve(T& t, size_t n) -> typename std::enable_if<not has_reserve_method(t), bool>::type {
  return false;
}

Note that this switching things is actually not so easy. In general, it's much easier when just SFINAE exist -- and you just want to enable_if one method and not provide any fallback:

template <typename T>
auto reserve(T& t, size_t n) -> decltype(t.reserve(n), void()) {
  t.reserve(n);
}

If substitution fails, this method is removed from the list of possible overloads.

Note: thanks to the semantics of , (the comma operator) you can chain multiple expressions in decltype and only the last actually decides the type. Handy to check multiple operations.

like image 86
Matthieu M. Avatar answered Nov 05 '22 03:11

Matthieu M.


A version that also relies on decltype but not on passing arbitrary types to (...) [ which is in fact a non-issue anyway, see Johannes' comment ]:

template<typename> struct Void { typedef void type; };

template<typename T, typename Sfinae = void>
struct has_reserve: std::false_type {};

template<typename T>
struct has_reserve<
    T
    , typename Void<
        decltype( std::declval<T&>().reserve(0) )
    >::type
>: std::true_type {};

I'd like to point out according to this trait a type such as std::vector<int>& does support reserve: here expressions are inspected, not types. The question that this trait answers is "Given an lvalue lval for such a type T, is the expressions lval.reserve(0); well formed". Not identical to the question "Does this type or any of its base types has a reserve member declared".

On the other hand, arguably that's a feature! Remember that the new C++11 trait are of the style is_default_constructible, not has_default_constructor. The distinction is subtle but has merits. (Finding a better fitting name in the style of is_*ible left as an exercise.)

In any case you can still use a trait such as std::is_class to possibly achieve what you want.

like image 26
Luc Danton Avatar answered Nov 05 '22 03:11

Luc Danton