Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Change the color of text within a pandas dataframe html table python using styles and css

I have a pandas dataframe:

arrays = [['Midland', 'Midland', 'Hereford', 'Hereford', 'Hobbs','Hobbs', 'Childress',
           'Childress', 'Reese', 'Reese', 'San Angelo', 'San Angelo'],
          ['WRF','MOS','WRF','MOS','WRF','MOS','WRF','MOS','WRF','MOS','WRF','MOS']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples)
df = pd.DataFrame(np.random.randn(12, 4), index=arrays,
                  columns=['00 UTC', '06 UTC', '12 UTC', '18 UTC'])

The table that prints df from this looks like this:enter image description here

I would like to color all of the values in the 'MOS' rows a certain color and color the left two index/header columns as well as the top header row a different background color than the rest of the cells with values in them. Any ideas how I can do this?

like image 699
HM14 Avatar asked Jul 21 '16 18:07

HM14


People also ask

How do I change text in a Dataframe in Python?

You can replace a string in the pandas DataFrame column by using replace(), str. replace() with lambda functions.

How do you color a column in a Dataframe in Python?

With your one line of code, can you apply to several columns with different colors for each column? @sqllearner you can apply the same color to several columns just by adding them to the subset, like df. style. set_properties(**{'background-color': 'red'}, subset=['A', 'C']).

How do I use conditional formatting in pandas?

One way to conditionally format your Pandas DataFrame is to highlight cells which meet certain conditions. To do so, we can write a simple function and pass that function into the Styler object using . apply() or .


2 Answers

This takes a few steps:

First import HTML and re

from IPython.display import HTML
import re

You can get at the html pandas puts out via the to_html method.

df_html = df.to_html()

Next we are going to generate a random identifier for the html table and style we are going to create.

random_id = 'id%d' % np.random.choice(np.arange(1000000))

Because we are going to insert some style, we need to be careful to specify that this style will only be for our table. Now let's insert this into the df_html

df_html = re.sub(r'<table', r'<table id=%s ' % random_id, df_html)

And create a style tag. This is really up to you. I just added some hover effect.

style = """
<style>
    table#{random_id} tr:hover {{background-color: #f5f5f5}}
</style>
""".format(random_id=random_id)

Finally, display it

HTML(style + df_html)

Function all in one.

def HTML_with_style(df, style=None, random_id=None):
    from IPython.display import HTML
    import numpy as np
    import re

    df_html = df.to_html()

    if random_id is None:
        random_id = 'id%d' % np.random.choice(np.arange(1000000))

    if style is None:
        style = """
        <style>
            table#{random_id} {{color: blue}}
        </style>
        """.format(random_id=random_id)
    else:
        new_style = []
        s = re.sub(r'</?style>', '', style).strip()
        for line in s.split('\n'):
                line = line.strip()
                if not re.match(r'^table', line):
                    line = re.sub(r'^', 'table ', line)
                new_style.append(line)
        new_style = ['<style>'] + new_style + ['</style>']

        style = re.sub(r'table(#\S+)?', 'table#%s' % random_id, '\n'.join(new_style))

    df_html = re.sub(r'<table', r'<table id=%s ' % random_id, df_html)

    return HTML(style + df_html)

Use it like this:

HTML_with_style(df.head())

enter image description here

HTML_with_style(df.head(), '<style>table {color: red}</style>')

enter image description here

style = """
<style>
    tr:nth-child(even) {color: green;}
    tr:nth-child(odd)  {color: aqua;}
</style>
"""
HTML_with_style(df.head(), style)

enter image description here

Learn CSS and go nuts!

like image 114
piRSquared Avatar answered Sep 28 '22 13:09

piRSquared


Using pandas new styling functionality (since 0.17.1):

import numpy as np
import pandas as pd

arrays = [['Midland', 'Midland', 'Hereford', 'Hereford', 'Hobbs','Hobbs', 'Childress',
           'Childress', 'Reese', 'Reese', 'San Angelo', 'San Angelo'],
          ['WRF','MOS','WRF','MOS','WRF','MOS','WRF','MOS','WRF','MOS','WRF','MOS']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples)
df = pd.DataFrame(np.random.randn(12, 4), index=arrays,
                  columns=['00 UTC', '06 UTC', '12 UTC', '18 UTC'])


def highlight_MOS(s):
    is_mos = s.index.get_level_values(1) == 'MOS'
    return ['color: darkorange' if v else 'color: darkblue' for v in is_mos]

s = df.style.apply(highlight_MOS)
s

enter image description here

like image 29
volodymyr Avatar answered Sep 28 '22 12:09

volodymyr