I have a csv file named data.csv
such as
TS;val
10:00;0.1
10:05;0.2
10:10;0.3
10:15;0.4
I read this csv file using this script
#!/usr/bin/env python
import pandas as pd
if __name__ == "__main__":
yyyy = 2013
mm = 2
dd = 1
df = pd.read_csv('data.csv', sep=';', parse_dates=[0], index_col=0)
print(df)
I get this
val
TS
2013-06-17 10:00:00 0.1
2013-06-17 10:05:00 0.2
2013-06-17 10:10:00 0.3
2013-06-17 10:15:00 0.4
I would like to change date of every DateTimeIndex to 2013-02-01
val
TS
2013-02-01 10:00:00 0.1
2013-02-01 10:05:00 0.2
2013-02-01 10:10:00 0.3
2013-02-01 10:15:00 0.4
What is the easier way to do this ?
Timestamps have a replace
method (just like datetimes):
In [11]: df.index.map(lambda t: t.replace(year=2013, month=2, day=1))
Out[11]:
array([Timestamp('2013-02-01 10:00:00', tz=None),
Timestamp('2013-02-01 10:05:00', tz=None),
Timestamp('2013-02-01 10:10:00', tz=None),
Timestamp('2013-02-01 10:15:00', tz=None)], dtype=object)
So set your index to this:
In [12]: df.index = df.index.map(lambda t: t.replace(year=2013, month=2, day=1))
Worth mentioning that you can pass in a date_parser
function to read_csv
, which might make more sense for you:
In [21]: df = pd.read_csv(file_name, sep=';', parse_dates=[0], index_col=0,
date_parser=lambda time: pd.Timestamp('2013/02/01 %s' % time))
In [22]: df
Out[22]:
val
TS
2013-02-01 10:00:00 0.1
2013-02-01 10:05:00 0.2
2013-02-01 10:10:00 0.3
2013-02-01 10:15:00 0.4
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With