I have a CPU intensive Celery task. I would like to use all the processing power (cores) across lots of EC2 instances to get this job done faster (a celery parallel distributed task with multiprocessing - I think).
The terms, threading, multiprocessing, distributed computing, distributed parallel processing are all terms I'm trying to understand better.
Example task:
@app.task for item in list_of_millions_of_ids: id = item # do some long complicated equation here very CPU heavy!!!!!!! database.objects(newid=id).save()
Using the code above (with an example if possible) how one would ago about distributed this task using Celery by allowing this one task to be split up utilising all the computing CPU power across all available machine in the cloud?
Celery itself is using billiard (a multiprocessing fork) to run your tasks in separate processes.
Celery supports two thread-based execution pools: eventlet and gevent. Here, the execution pool runs in the same process as the Celery worker itself. To be precise, both eventlet and gevent use greenlets and not threads.
celery -A tasks worker --pool=solo --loglevel=info Worker picks up tasks from the Queue and starts running in the thread. As we have only one thread here. It cannot pick another task until existing task is completed.
Celery is a distributed task queue written in Python, which works using distributed messages.
Your goals are:
Celery can do both of these for you fairly easily. The first thing to understand is that each celery worker is configured by default to run as many tasks as there are CPU cores available on a system:
Concurrency is the number of prefork worker process used to process your tasks concurrently, when all of these are busy doing work new tasks will have to wait for one of the tasks to finish before it can be processed.
The default concurrency number is the number of CPU’s on that machine (including cores), you can specify a custom number using -c option. There is no recommended value, as the optimal number depends on a number of factors, but if your tasks are mostly I/O-bound then you can try to increase it, experimentation has shown that adding more than twice the number of CPU’s is rarely effective, and likely to degrade performance instead.
This means each individual task doesn't need to worry about using multiprocessing/threading to make use of multiple CPUs/cores. Instead, celery will run enough tasks concurrently to use each available CPU.
With that out of the way, the next step is to create a task that handles processing some subset of your list_of_millions_of_ids
. You have a couple of options here - one is to have each task handle a single ID, so you run N tasks, where N == len(list_of_millions_of_ids)
. This will guarantee that work is evenly distributed amongst all your tasks since there will never be a case where one worker finishes early and is just waiting around; if it needs work, it can pull an id off the queue. You can do this (as mentioned by John Doe) using the celery group
.
tasks.py:
@app.task def process_ids(item): id = item #long complicated equation here database.objects(newid=id).save()
And to execute the tasks:
from celery import group from tasks import process_id jobs = group(process_ids(item) for item in list_of_millions_of_ids) result = jobs.apply_async()
Another option is to break the list into smaller pieces and distribute the pieces to your workers. This approach runs the risk of wasting some cycles, because you may end up with some workers waiting around while others are still doing work. However, the celery documentation notes that this concern is often unfounded:
Some may worry that chunking your tasks results in a degradation of parallelism, but this is rarely true for a busy cluster and in practice since you are avoiding the overhead of messaging it may considerably increase performance.
So, you may find that chunking the list and distributing the chunks to each task performs better, because of the reduced messaging overhead. You can probably also lighten the load on the database a bit this way, by calculating each id, storing it in a list, and then adding the whole list into the DB once you're done, rather than doing it one id at a time. The chunking approach would look something like this
tasks.py:
@app.task def process_ids(items): for item in items: id = item #long complicated equation here database.objects(newid=id).save() # Still adding one id at a time, but you don't have to.
And to start the tasks:
from tasks import process_ids jobs = process_ids.chunks(list_of_millions_of_ids, 30) # break the list into 30 chunks. Experiment with what number works best here. jobs.apply_async()
You can experiment a bit with what chunking size gives you the best result. You want to find a sweet spot where you're cutting down messaging overhead while also keeping the size small enough that you don't end up with workers finishing their chunk much faster than another worker, and then just waiting around with nothing to do.
In the world of distribution there is only one thing you should remember above all :
Premature optimization is the root of all evil. By D. Knuth
I know it sounds evident but before distributing double check you are using the best algorithm (if it exists...). Having said that, optimizing distribution is a balancing act between 3 things:
Computers are made so the closer you get to your processing unit (3) the faster and more efficient (1) and (2) will be. The order in a classic cluster will be : network hard drive, local hard drive, RAM, inside processing unit territory... Nowadays processors are becoming sophisticated enough to be considered as an ensemble of independent hardware processing units commonly called cores, these cores process data (3) through threads (2). Imagine your core is so fast that when you send data with one thread you are using 50% of the computer power, if the core has 2 threads you will then use 100%. Two threads per core is called hyper threading, and your OS will see 2 CPUs per hyper threaded core.
Managing threads in a processor is commonly called multi-threading. Managing CPUs from the OS is commonly called multi-processing. Managing concurrent tasks in a cluster is commonly called parallel programming. Managing dependent tasks in a cluster is commonly called distributed programming.
So where is your bottleneck ?
What about Celery ?
Celery is a messaging framework for distributed programming, that will use a broker module for communication (2) and a backend module for persistence (1), this means that you will be able by changing the configuration to avoid most bottlenecks (if possible) on your network and only on your network. First profile your code to achieve the best performance in a single computer. Then use celery in your cluster with the default configuration and set CELERY_RESULT_PERSISTENT=True
:
from celery import Celery app = Celery('tasks', broker='amqp://guest@localhost//', backend='redis://localhost') @app.task def process_id(all_the_data_parameters_needed_to_process_in_this_computer): #code that does stuff return result
During execution open your favorite monitoring tools, I use the default for rabbitMQ and flower for celery and top for cpus, your results will be saved in your backend. An example of network bottleneck is tasks queue growing so much that they delay execution, you can proceed to change modules or celery configuration, if not your bottleneck is somewhere else.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With