I would like to join the following two dataframes.
The first dataframe has multiple keys in one column
>>> import pandas as pd
>>> df = pd.DataFrame(data={'col1': [1,2,3], 'key': ['x, y','y', 'z, x']})
>>> df
col1 key
0 1 x, y
1 2 y
2 3 z, x
For each of the key in the first dataframe i have a mapping of sorts in a second dataframe. Like this:
>>> df2 = pd.DataFrame(data= {'key': ['x','y','z'], 'value': ["v1,v2,
v3","v4,v3", "v5"]})
>>> df2
key value
0 x v1,v2, v3
1 y v4,v3
2 z v5
I would like to end up with all values next to their corresponding keys in one column. Ideally with duplicates removed as in col1 (x and y both have v3).
>>> df3
col1 key value
0 1 x, y v1, v2, v3, v4
1 2 y v4, v3
2 3 z, x v1, v2, v3, v5
Check with
d=dict(zip(df2.key,df2.value))
df['New']=[','.join([d.get(y) for y in x.split(', ')]) for x in df.key]
and now we remove the duplicate
df.New=df.New.str.split(',').apply(lambda x : ','.join(set(x)))
df
col1 key New
0 1 x, y v3,v1,v2,v4
1 2 y v3,v4
2 3 z, x v5,v3,v1,v2
Simple for loop
for k,v in zip(df2.key, df2.value):
df.key = df.key.str.replace(k,v)
Outputs
col1 key
0 1 v1,v2, v3, v4,v3
1 2 v4,v3
2 3 v5, v1,v2, v3
To remove the duplicates, can transform
df.key.transform(lambda s: sorted(set([k.strip() for k in s.split(',')])))
col1 key
0 1 [v1, v2, v3, v4]
1 2 [v3, v4]
2 3 [v1, v2, v3, v5]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With