I came across a project where we have variables in a data set such as customer ids, dates they purchased the products, type of products they purchased, and product price. I wanted to predict at what date the customer is likely to make a transaction and what product they are likely to purchase. Dates could be in days, weeks, or months.
From my understanding, I think I'll have to split the problem into different models. 1st model predicting the product(s) that EACH customer will purchase. 2nd model predicting the date of the transaction that is likely to occur for EACH customer. Obviously for the first model, we should be using classification machine learning models. I am not sure which model should I be using for the 2nd model. It could be time series, but I have not predicted the dates for a model yet. I hope I am the right track.
Main questions are:
Suggestions will be very much appreciated!
Propensity models,also called likelihood to buy or reponse models, are what most people think about with predictive analytics. These models help predict the likelihood of a certain type of customer purchasing behavior, like whether a customer that is browsing your website is likely to buy something.
KNN is a simple algorithm. When a new customer is presented, the algorithm looks through the database for customers who are most similar to the target customer. It then predicts if the customer would churn based on whether those similar customers churned or not.
Building Machine Learning Models From the results in Figure 20 above, we see that the LogisticRegression model is the best in terms of the metrics accuracy and F₁-score.
Check out the BTYD package:
http://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf
It uses Bayesian models to model customer purchase behaviour - both on the individual customer level and in aggregate. It certainly can solve your problem of "when" customers will buy. Regarding the problem "which products" - I suspect that you could separately model the purchasing process for particular product (or set of products).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With