If I try to store a dataframe with a text index in a MySQL database I get the error "BLOB/TEXT column used in key specification without a key length", for example:
import pandas as pd
import sqlalchemy as sa
df = pd.DataFrame(
{'Id': ['AJP2008H', 'BFA2010Z'],
'Date': pd.to_datetime(['2010-05-05', '2010-07-05']),
'Value': [74.2, 52.3]})
df.set_index(['Id', 'Date'], inplace=True)
engine = sa.create_engine(db_connection)
conn = engine.connect()
df.to_sql('test_table_index', conn, if_exists='replace')
conn.close()
Will generate the error:
InternalError: (pymysql.err.InternalError)
(1170, "BLOB/TEXT column 'Id' used in key specification without a key length")
[SQL: 'CREATE INDEX `ix_test_table_index_Id` ON test_table_index (`Id`)']
If I don't set the index it works fine. Is there any way to store it without dropping directly down to SQLAlchemy to create the table first?
(This is my current SQLAlchemy workaround:
table = Table(
name, self.metadata,
Column('Id', String(ID_LENGTH), primary_key=True),
Column('Date', DateTime, primary_key=True),
Column('Value', String(VALUE_LENGTH)))
sa.MetaData().create_all(engine) # Creates the table if it doens't exist
)
We can read data from a text file using read_table() in pandas. This function reads a general delimited file to a DataFrame object. This function is essentially the same as the read_csv() function but with the delimiter = '\t', instead of a comma by default.
Pandas support writing dataframes into MySQL database tables as well as loading from them.
you can specify a SQLAlchemy data type explicitly, using dtype
argument when calling to_sql() method:
In [48]: from sqlalchemy.types import VARCHAR
In [50]: df
Out[50]:
Value
Id Date
AJP2008H 2010-05-05 74.2
BFA2010Z 2010-07-05 52.3
In [51]: df.to_sql('test_table_index', conn, if_exists='replace',
dtype={'Id': VARCHAR(df.index.get_level_values('Id').str.len().max())})
Let's check it on the MySQL side:
mysql> show create table test_table_index\G
*************************** 1. row ***************************
Table: test_table_index
Create Table: CREATE TABLE `test_table_index` (
`Id` varchar(8) DEFAULT NULL,
`Date` datetime DEFAULT NULL,
`Value` double DEFAULT NULL,
KEY `ix_test_table_index_Id` (`Id`),
KEY `ix_test_table_index_Date` (`Date`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)
mysql> select * from test_table_index;
+----------+---------------------+-------+
| Id | Date | Value |
+----------+---------------------+-------+
| AJP2008H | 2010-05-05 00:00:00 | 74.2 |
| BFA2010Z | 2010-07-05 00:00:00 | 52.3 |
+----------+---------------------+-------+
2 rows in set (0.00 sec)
now let's read it back into a new DF:
In [52]: x = pd.read_sql('test_table_index', conn, index_col=['Id','Date'])
In [53]: x
Out[53]:
Value
Id Date
AJP2008H 2010-05-05 74.2
BFA2010Z 2010-07-05 52.3
you can find the maximum length of your object column this way:
In [75]: df.index.get_level_values('Id').str.len().max()
Out[75]: 8
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With