Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Can pandas handle variable-length whitespace as column delimiters [duplicate]

Tags:

python

pandas

I have a textfile where columns are separated by variable amounts of whitespace. Is it possible to load this file directly as a pandas dataframe without pre-processing the file? In the pandas documentation the delimiter section says that I can use a 's*' construct but I couldn't get this to work.

## sample data
head sample.txt

#                                                                            --- full sequence --- -------------- this domain -------------   hmm coord   ali coord   env coord
# target name        accession   tlen query name           accession   qlen   E-value  score  bias   #  of  c-Evalue  i-Evalue  score  bias  from    to  from    to  from    to  acc description of target
#------------------- ---------- ----- -------------------- ---------- ----- --------- ------ ----- --- --- --------- --------- ------ ----- ----- ----- ----- ----- ----- ----- ---- ---------------------
ABC_membrane         PF00664.18   275 AAF67494.2_AF170880  -            615     8e-29  100.7  11.4   1   1     3e-32     1e-28  100.4   7.9     3   273    42   313    40   315 0.95 ABC transporter transmembrane region
ABC_tran             PF00005.22   118 AAF67494.2_AF170880  -            615   2.6e-20   72.8   0.0   1   1   1.9e-23   6.4e-20   71.5   0.0     1   118   402   527   402   527 0.93 ABC transporter
SMC_N                PF02463.14   220 AAF67494.2_AF170880  -            615   3.8e-08   32.7   0.2   1   2    0.0036        12    4.9   0.0    27    40   391   404   383   408 0.86 RecF/RecN/SMC N terminal domain
SMC_N                PF02463.14   220 AAF67494.2_AF170880  -            615   3.8e-08   32.7   0.2   2   2   1.8e-09   6.1e-06   25.4   0.0   116   210   461   568   428   575 0.85 RecF/RecN/SMC N terminal domain
AAA_16               PF13191.1    166 AAF67494.2_AF170880  -            615   3.1e-06   27.5   0.3   1   1     2e-09     7e-06   26.4   0.2    20   158   386   544   376   556 0.72 AAA ATPase domain
YceG                 PF02618.11   297 AAF67495.1_AF170880  -            284   3.4e-64  216.6   0.0   1   1   2.9e-68     4e-64  216.3   0.0    68   296    53   274    29   275 0.85 YceG-like family
Pyr_redox_3          PF13738.1    203 AAF67496.2_AF170880  -            352   2.9e-28   99.1   0.0   1   2   2.8e-30   4.8e-27   95.2   0.0     1   201     4   198     4   200 0.85 Pyridine nucleotide-disulphide oxidoreductase

#load data
from pandas import *
data = read_table('sample.txt', skiprows=3, header=None, sep=" ")

ValueError: Expecting 83 columns, got 91 in row 4

#load data part 2
data = read_table('sample.txt', skiprows=3, header=None, sep="'s*' ")
#this mushes some of the columns into the first column and drops the rest.
    X.1
1    ABC_tran PF00005.22 118 AAF67494.2_
2    SMC_N PF02463.14 220 AAF67494.2_
3    SMC_N PF02463.14 220 AAF67494.2_
4    AAA_16 PF13191.1 166 AAF67494.2_
5    YceG PF02618.11 297 AAF67495.1_
6    Pyr_redox_3 PF13738.1 203 AAF67496.2_
7    Pyr_redox_3 PF13738.1 203 AAF67496.2_
8    FMO-like PF00743.14 532 AAF67496.2_
9    FMO-like PF00743.14 532 AAF67496.2_

While I can preprocess the files to change the whitespace to commas/tabs it would be nice to load them directly.

(FYI this is the *.hmmdomtblout output from the hmmscan program)

like image 312
zach Avatar asked Aug 18 '12 19:08

zach


People also ask

Can column names have spaces in pandas?

You can refer to column names that contain spaces or operators by surrounding them in backticks. This way you can also escape names that start with a digit, or those that are a Python keyword. Basically when it is not valid Python identifier. See notes down for more details.

How do you get rid of white space in pandas?

Pandas provide 3 methods to handle white spaces(including New line) in any text data. As it can be seen in the name, str. lstrip() is used to remove spaces from the left side of string, str. rstrip() to remove spaces from right side of the string and str.

Is pandas query faster than LOC?

The query function seams more efficient than the loc function. DF2: 2K records x 6 columns. The loc function seams much more efficient than the query function.


3 Answers

You should be able to just do this, which @DSM just taught me in another thread:

data = read_table('sample.txt', skiprows=3, header=None, delim_whitespace=True)

Documentation

like image 97
tommy.carstensen Avatar answered Oct 20 '22 08:10

tommy.carstensen


I think there's just a missing \ in the docs (maybe because it was interpreted as an escape marker at some point?) It's a regexp, after all:

In [68]: data = read_table('sample.txt', skiprows=3, header=None, sep=r"\s*")

In [69]: data
Out[69]: 
<class 'pandas.core.frame.DataFrame'>
Int64Index: 7 entries, 0 to 6
Data columns:
X.1     7  non-null values
X.2     7  non-null values
X.3     7  non-null values
X.4     7  non-null values
X.5     7  non-null values
X.6     7  non-null values
[...]
X.23    7  non-null values
X.24    7  non-null values
X.25    5  non-null values
X.26    3  non-null values
dtypes: float64(8), int64(10), object(8)

Because of the delimiter problem noted by @MRAB, it has some trouble with the last few columns:

In [73]: data.ix[:,20:]
Out[73]: 
   X.21  X.22           X.23                   X.24            X.25    X.26
0   315  0.95            ABC            transporter   transmembrane  region
1   527  0.93            ABC            transporter            None    None
2   408  0.86  RecF/RecN/SMC                      N        terminal  domain
3   575  0.85  RecF/RecN/SMC                      N        terminal  domain
4   556  0.72            AAA                 ATPase          domain    None
5   275  0.85      YceG-like                 family            None    None
6   200  0.85       Pyridine  nucleotide-disulphide  oxidoreductase    None

but that can be patched up at the end.

like image 29
DSM Avatar answered Oct 20 '22 07:10

DSM


None of the given answers works in a case like this:

Block..Col.name.with.spaces..col3
...1..6.141754e+003..2.998903e+000
2048..6.154461e+003..6.010216e+000

that is, two or more spaces are used as separators, but the column names can themselves contain one space.

In such a case, we need a regular expression for two or more spaces. This will work:

sep=r"[ ]{2,}"

But again, the drawback is that it triggers the python parser.

like image 5
germ Avatar answered Oct 20 '22 06:10

germ