I perform the cross product of contiguous segments of a trajectory (xy coordinates) using the following script:
In [129]:
def func1(xy, s):
size = xy.shape[0]-2*s
out = np.zeros(size)
for i in range(size):
p1, p2 = xy[i], xy[i+s] #segment 1
p3, p4 = xy[i+s], xy[i+2*s] #segment 2
out[i] = np.cross(p1-p2, p4-p3)
return out
def func2(xy, s):
size = xy.shape[0]-2*s
p1 = xy[0:size]
p2 = xy[s:size+s]
p3 = p2
p4 = xy[2*s:size+2*s]
tmp1 = p1-p2
tmp2 = p4-p3
return tmp1[:, 0] * tmp2[:, 1] - tmp2[:, 0] * tmp1[:, 1]
In [136]:
xy = np.array([[1,2],[2,3],[3,4],[5,6],[7,8],[2,4],[5,2],[9,9],[1,1]])
func2(xy, 2)
Out[136]:
array([ 0, -3, 16, 1, 22])
func1 is particularly slow because of the inner loop so I rewrote the cross-product myself (func2) which is orders of magnitude faster.
Is it possible to use the numpy einsum function to make the same calculation?
einsum
computes sums of products only, but you could shoehorn the cross-product into a sum of products by reversing the columns of tmp2
and changing the sign of the first column:
def func3(xy, s):
size = xy.shape[0]-2*s
tmp1 = xy[0:size] - xy[s:size+s]
tmp2 = xy[2*s:size+2*s] - xy[s:size+s]
tmp2 = tmp2[:, ::-1]
tmp2[:, 0] *= -1
return np.einsum('ij,ij->i', tmp1, tmp2)
But func3
is slower than func2
.
In [80]: xy = np.tile(xy, (1000, 1))
In [104]: %timeit func1(xy, 2)
10 loops, best of 3: 67.5 ms per loop
In [105]: %timeit func2(xy, 2)
10000 loops, best of 3: 73.2 µs per loop
In [106]: %timeit func3(xy, 2)
10000 loops, best of 3: 108 µs per loop
Sanity check:
In [86]: np.allclose(func1(xy, 2), func3(xy, 2))
Out[86]: True
I think the reason why func2
is beating einsum
here is because the cost of setting of the loop in einsum
for just 2 iterations is too expensive compared to just manually writing out the sum, and the reversing and multiplying eat up some time as well.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With