I am solving this problem, in which they ask for the index of the first Fibonacci number of 1000 digits, and my first idea was something similar to:
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.NoOfDigits < 1000)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
However, as far as I can tell, there is no method for counting the number of digits of a BigInteger. Is this true? One way of circumventing it is to use the .ToString().Length method of a BigInteger, but I'm told that string processing is slow.
A BigInteger also has a .ToByteArray(), and I thought of converting a BigInteger to a byte array and checking the length of that array - but I don't think that this uniquely determines the number of digits in the BigInteger.
For what it's worth, I implemented another way of solving it, which is manually storing the Fibonacci numbers in array, and which stops as soon as the array is full, and I compared this to the .ToString-based method, which is about 2.5 times slower, but the first method takes 0.1 second, which also seems like a long time.
Edit: I've tested the two suggestions in the answers below (the one with BigInteger.Log and the one with MaxLimitMethod). I get the following run times:
Program
using System;
using System.Collections.Generic;
using System.Numerics;
using System.Diagnostics;
class Program
{
static void Main(string[] args)
{
Stopwatch clock = new Stopwatch();
clock.Start();
int index1 = Algorithms.IndexOfNDigits(1000);
clock.Stop();
var elapsedTime1 = clock.Elapsed;
Console.WriteLine(index1);
Console.WriteLine("Original method: {0}",elapsedTime1);
Console.ReadKey();
clock.Reset();
clock.Start();
int index2 = Algorithms.StringMethod(1000);
clock.Stop();
var elapsedTime2 = clock.Elapsed;
Console.WriteLine(index2);
Console.WriteLine("StringMethod: {0}", elapsedTime2);
Console.ReadKey();
clock.Reset();
clock.Start();
int index3 = Algorithms.BigIntegerLogMethod(1000);
clock.Stop();
var elapsedTime3 = clock.Elapsed;
Console.WriteLine(index3);
Console.WriteLine("BigIntegerLogMethod: {0}", elapsedTime3);
Console.ReadKey();
clock.Reset();
clock.Start();
int index4 = Algorithms.MaxLimitMethod(1000);
clock.Stop();
var elapsedTime4 = clock.Elapsed;
Console.WriteLine(index4);
Console.WriteLine("MaxLimitMethod: {0}", elapsedTime4);
Console.ReadKey();
}
}
static class Algorithms
{
//Find the index of the first Fibonacci number of n digits
public static int IndexOfNDigits(int n)
{
if (n == 1) return 1;
int[] firstNumber = new int[n];
int[] secondNumber = new int[n];
firstNumber[0] = 1;
secondNumber[0] = 1;
int currentIndex = 2;
while (firstNumber[n-1] == 0)
{
int carry = 0, singleSum = 0;
int[] tmp = new int[n]; //Placeholder for the sum
for (int i = 0; i<n; i++)
{
singleSum = firstNumber[i] + secondNumber[i];
if (singleSum >= 10) carry = 1;
else carry = 0;
tmp[i] += singleSum % 10;
if (tmp[i] >= 10)
{
tmp[i] = 0;
carry = 1;
}
int countCarries = 0;
while (carry == 1)
{
countCarries++;
if (tmp[i + countCarries] == 9)
{
tmp[i + countCarries] = 0;
tmp[i + countCarries + 1] += 1;
carry = 1;
}
else
{
tmp[i + countCarries] += 1;
carry = 0;
}
}
}
for (int i = 0; i < n; i++ )
{
secondNumber[i] = firstNumber[i];
firstNumber[i] = tmp[i];
}
currentIndex++;
}
return currentIndex;
}
public static int StringMethod(int n)
{
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.ToString().Length < n)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
public static int BigIntegerLogMethod(int n)
{
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (Math.Floor(BigInteger.Log10(x) + 1) < n)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
public static int MaxLimitMethod(int n)
{
BigInteger maxLimit = BigInteger.Pow(10, n - 1);
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.CompareTo(maxLimit) < 0)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
}
The BIGINT data type is a machine-independent method for representing numbers in the range of -2 63-1 to 2 63-1. ESQL/C provides routines that facilitate the conversion from the BIGINT data type to other data types in the C language. The BIGINT data type is internally represented with the ifx_int8_t structure.
In C++, we can use large numbers by using the boost library. This C++ boost library is widely used library. This is used for different sections. It has large domain of applications.
Provided that x > 0
int digits = (int)Math.Floor(BigInteger.Log10(x) + 1);
will get the number of digits.
Out of curiosity, I tested the
int digits = x.ToString().Length;
approach. For 100 000 000 iterations, it's 3 times slower than the Log10 solution.
Expanding on my comment--instead of testing based on number of digits, test based on exceeding a constant that has the upper limit of the problem:
public static int MaxLimitMethod(int n)
{
BigInteger maxLimit = BigInteger.Pow(10, n);
BigInteger x = 1;
BigInteger y = 1;
BigInteger tmp = 0;
int currentIndex = 2;
while (x.CompareTo(maxLimit) < 0)
{
tmp = x + y;
y = x;
x = tmp;
currentIndex++;
}
return currentIndex;
}
This should result in a significant performance increase.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With