Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Can GGPLOT make 2D summaries of data?

Tags:

r

ggplot2

I wish to plot mean (or other function) of reaction time as a function of the location of the target in the x y plane. As test data:

library(ggplot2)
xs <- runif(100,-1,1)
ys <- runif(100,-1,1)
rts <- rnorm(100)
testDF <- data.frame("x"=xs,"y"=ys,"rt"=rts)

I know I can do this:

p <- ggplot(data = testDF,aes(x=x,y=y))+geom_bin2d(bins=10)

What I would like to be able to do, is the same thing but plot a function of the data in each bin rather than counts. Can I do this?

Or do I need to generate the conditional means first in R (e.g. drt <- tapply(testDF$rt,list(cut(testDF$x,10),cut(testDF$y,10)),mean)) and then plot that?

Thank you.

like image 990
Britt Anderson Avatar asked Jun 20 '11 16:06

Britt Anderson


1 Answers

Update With the release of ggplot2 0.9.0, much of this functionality is covered by the new additions of stat_summary2d and stat_summary_bin.

here is a gist for this answer: https://gist.github.com/1341218

here is a slight modification of stat_bin2d so as to accept arbitrary function:

StatAggr2d <- proto(Stat, {
  objname <- "aggr2d" 
  default_aes <- function(.) aes(fill = ..value..)
  required_aes <- c("x", "y", "z")
  default_geom <- function(.) GeomRect

  calculate <- function(., data, scales, binwidth = NULL, bins = 30, breaks = NULL, origin = NULL, drop = TRUE, fun = mean, ...) {

    range <- list(
      x = scales$x$output_set(),
      y = scales$y$output_set()
    )

    # Determine binwidth, if omitted
    if (is.null(binwidth)) {
      binwidth <- c(NA, NA)
      if (is.integer(data$x)) {
        binwidth[1] <- 1
      } else {
        binwidth[1] <- diff(range$x) / bins
      }
      if (is.integer(data$y)) {
        binwidth[2] <- 1
      } else {
        binwidth[2] <- diff(range$y) / bins
      }      
    }
    stopifnot(is.numeric(binwidth))
    stopifnot(length(binwidth) == 2)

    # Determine breaks, if omitted
    if (is.null(breaks)) {
      if (is.null(origin)) {
        breaks <- list(
          fullseq(range$x, binwidth[1]),
          fullseq(range$y, binwidth[2])
        )
      } else {
        breaks <- list(
          seq(origin[1], max(range$x) + binwidth[1], binwidth[1]),
          seq(origin[2], max(range$y) + binwidth[2], binwidth[2])
        )
      }
    }
    stopifnot(is.list(breaks))
    stopifnot(length(breaks) == 2)
    stopifnot(all(sapply(breaks, is.numeric)))
    names(breaks) <- c("x", "y")

    xbin <- cut(data$x, sort(breaks$x), include.lowest=TRUE)
    ybin <- cut(data$y, sort(breaks$y), include.lowest=TRUE)

    if (is.null(data$weight)) data$weight <- 1
    ans <- ddply(data.frame(data, xbin, ybin), .(xbin, ybin), function(d) data.frame(value = fun(d$z)))

    within(ans,{
      xint <- as.numeric(xbin)
      xmin <- breaks$x[xint]
      xmax <- breaks$x[xint + 1]

      yint <- as.numeric(ybin)
      ymin <- breaks$y[yint]
      ymax <- breaks$y[yint + 1]
    })
  }
})

stat_aggr2d <- StatAggr2d$build_accessor()

and usage:

ggplot(data = testDF,aes(x=x,y=y, z=rts))+stat_aggr2d(bins=3)
ggplot(data = testDF,aes(x=x,y=y, z=rts))+
  stat_aggr2d(bins=3, fun = function(x) sum(x^2))

enter image description here

As well, here is a slight modification of stat_binhex:

StatAggrhex <- proto(Stat, {
  objname <- "aggrhex"

  default_aes <- function(.) aes(fill = ..value..)
  required_aes <- c("x", "y", "z")
  default_geom <- function(.) GeomHex

  calculate <- function(., data, scales, binwidth = NULL, bins = 30, na.rm = FALSE, fun = mean, ...) {
    try_require("hexbin")
    data <- remove_missing(data, na.rm, c("x", "y"), name="stat_hexbin")

    if (is.null(binwidth)) {
      binwidth <- c( 
        diff(scales$x$input_set()) / bins,
        diff(scales$y$input_set() ) / bins
      )
    }

    try_require("hexbin")

    x <- data$x
    y <- data$y

    # Convert binwidths into bounds + nbins
    xbnds <- c(
      round_any(min(x), binwidth[1], floor) - 1e-6, 
      round_any(max(x), binwidth[1], ceiling) + 1e-6
    )
    xbins <- diff(xbnds) / binwidth[1]

    ybnds <- c(
      round_any(min(y), binwidth[1], floor) - 1e-6, 
      round_any(max(y), binwidth[2], ceiling) + 1e-6
    )
    ybins <- diff(ybnds) / binwidth[2]

    # Call hexbin
    hb <- hexbin(
      x, xbnds = xbnds, xbins = xbins,  
      y, ybnds = ybnds, shape = ybins / xbins,
      IDs = TRUE
    )
    value <- tapply(data$z, hb@cID, fun)

    # Convert to data frame
    data.frame(hcell2xy(hb), value)
  }


})

stat_aggrhex <- StatAggrhex$build_accessor()

and usage:

ggplot(data = testDF,aes(x=x,y=y, z=rts))+stat_aggrhex(bins=3)
ggplot(data = testDF,aes(x=x,y=y, z=rts))+
  stat_aggrhex(bins=3, fun = function(x) sum(x^2))

enter image description here

like image 111
kohske Avatar answered Sep 28 '22 16:09

kohske