I've been searching for a way to calculate the percentile rank for every value in a given list and I've been unsuccessful thus far.
org.apache.commons.math3
gives you a way to fetch the pth percentile from a list of values but what I want is the opposite. I want to have a ranking for every value in the list. Is anyone aware of a library or a way in Apache commons math to achieve that?
For example: given a list of values {1,2,3,4,5}
, I'd want to have the percentile rank for every value with the maximum percentile being 99 or 100 and the minimum being 0 or 1.
Updated code:
public class TestPercentile {
public static void main(String args[]) {
double x[] = { 10, 11, 12, 12, 12, 12, 15, 18, 19, 20 };
calculatePercentiles(x);
}
public static void calculatePercentiles(double[] arr) {
for (int i = 0; i < arr.length; i++) {
int count = 0;
int start = i;
if (i > 0) {
while (i > 0 && arr[i] == arr[i - 1]) {
count++;
i++;
}
}
double perc = ((start - 0) + (0.5 * count));
perc = perc / (arr.length - 1);
for (int k = 0; k < count + 1; k++)
System.out.println("Percentile for value " + (start + k + 1)
+ " = " + perc * 100);
}
}}
Sample Output:
Percentile for value 1 = 0.0
Percentile for value 2 = 11.11111111111111
Percentile for value 3 = 22.22222222222222
Percentile for value 4 = 50.0
Percentile for value 5 = 50.0
Percentile for value 6 = 50.0
Percentile for value 7 = 50.0
Percentile for value 8 = 77.77777777777779
Percentile for value 9 = 88.88888888888889
Percentile for value 10 = 100.0
Can someone let me know if this is correct and if there is a library for doing this more cleanly?
Thank you!
It really depends on your definition of percentile. Below is a solution using NaturalRanking and rescaling to 0-1 interval. It is nice that NaturalRanking has a few strategies for handling equal values and nans already implemented.
import java.util.Arrays;
import org.apache.commons.math3.stat.ranking.NaNStrategy;
import org.apache.commons.math3.stat.ranking.NaturalRanking;
import org.apache.commons.math3.stat.ranking.TiesStrategy;
public class Main {
public static void main(String[] args) {
double[] arr = {Double.NaN, 10, 11, 12, 12, 12, 12, 15, 18, 19, 20};
PercentilesScaledRanking ranking = new PercentilesScaledRanking(NaNStrategy.REMOVED, TiesStrategy.MAXIMUM);
double[] ranks = ranking.rank(arr);
System.out.println(Arrays.toString(ranks));
//prints:
//[0.1, 0.2, 0.6, 0.6, 0.6, 0.6, 0.7, 0.8, 0.9, 1.0]
}
}
class PercentilesScaledRanking extends NaturalRanking {
public PercentilesScaledRanking(NaNStrategy nanStrategy, TiesStrategy tiesStrategy) {
super(nanStrategy, tiesStrategy);
}
@Override
public double[] rank(double[] data) {
double[] rank = super.rank(data);
for (int i = 0; i < rank.length; i++) {
rank[i] = rank[i] / rank.length;
}
return rank;
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With