Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

calculating intersection point of quadratic bezier curve

This is definitely pushing the limits for my trig knowledge.

Is there a formula for calculating an intersection point between a quadratic bezier curve and a line?

Example:

in the image below, I have P1, P2, C (which is the control point) and X1, X2 (which for my particular calculation is just a straight line on the X axis.)

What I would like to be able to know is the X,Y position of T as well as the angle of the tangent at T. at the intersection point between the red curve and the black line.

curve example

After doing a little research and finding this question, I know I can use:

t = 0.5; // given example value
x = (1 - t) * (1 - t) * p[0].x + 2 * (1 - t) * t * p[1].x + t * t * p[2].x;
y = (1 - t) * (1 - t) * p[0].y + 2 * (1 - t) * t * p[1].y + t * t * p[2].y;

to calculate my X,Y position at any given point along the curve. So using that I could just loop through a bunch of points along the curve, checking to see if any are on my intersecting X axis. And from there try to calculate my tangent angle. But that really doesn't seem like the best way to do it. Any math guru's out there know what the best way is?

I'm thinking that perhaps it's a bit more complicated than I want it to be.

like image 469
tyler mackenzie Avatar asked Dec 27 '14 04:12

tyler mackenzie


People also ask

How do you find the Bezier curve of a quadratic equation?

So, Quadratic bezier curve is given by, B(t) = (1-t) BP0,P1(t) + t BP1,P2(t), 0 < t < 1.

How do you find the midpoint of a Bezier curve?

As a refresher, the formula for finding the midpoint of two points is a follows: M = (P0 + P1) / 2 . The calculation first determines the midpoint of the start point Z0 and the first control point C0, which gives us M0. It then finds the midpoint of both control points C0 and C1, which gives us M1.

What is quadratic Bezier curve?

The quadratic Bézier curve is how we call the Bézier curve with 3 control points, since the degree of P(t) will be 2. Let's calculate the Bézier curve given 3 control points and explore some properties we might find! Remember, eq. 1 holds for n+1 points, so in our case n=2.

How do you calculate the curvature of a Bezier curve?

Curvature of a Bézier Curve The osculating circle with radius r for a curve C at point P. Curvature for a curve at a certain point is defined as the reciprocal of the radius of the osculating circle. In the figure at left, the osculating circle is marked in blue for curve C at point P.


2 Answers

If you only need an intersection with a straight line in the x-direction you already know the y-coordinate of the intersection. To get the x-coordinate do something like this:

  • The equation for your line is simply y = b
  • Setting it equal to your y-equation of the beziér function y(t) gets you:
    b = (1 - t) * (1 - t) * p[0].y + 2 * (1 - t) * t * p[1].y + t * t * p[2].y
  • Solving* for t gets you:
    t = (p[0].y - p[1].y - sqrt(b*a + p[1].y*p[1].y - p[0].y*p[2].y)) / a
    with a = p[0].y - 2*p[1].y + p[2].y
  • Insert the resulting t into your x-equation of the beziér function x(t) to get the x-coordinate and you're done.

You may have to pay attention to some special cases, like when no solution exists, because the argument of the square root may then become negative or the denominator (a) might become zero, or something like that.

Leave a comment if you need more help or the intersection with arbitrary lines.

(*) I used wolfram alpha to solve the equation because I'm lazy: Wolfram alpha solution.

like image 70
Gigo Avatar answered Nov 01 '22 03:11

Gigo


enter image description here

Quadratic curve formula:

y=ax^2+bx+c // where a,b,c are known

Line formula:

// note: this `B` is not the same as the `b` in the quadratic formula ;-)

y=m*x+B  // where m,B are known.

The curve & line intersect where both equations are true for the same [x,y]:

Here's annotated code and a Demo:

// canvas vars
var canvas=document.getElementById("canvas");
var ctx=canvas.getContext("2d");
var cw=canvas.width;
var ch=canvas.height;

// linear interpolation utility
var lerp=function(a,b,x){ return(a+x*(b-a)); };

// qCurve & line defs
var p1={x:125,y:200};
var p2={x:250,y:225};
var p3={x:275,y:100};
var a1={x:30,y:125};
var a2={x:300,y:175};

// calc the intersections
var points=calcQLintersects(p1,p2,p3,a1,a2);

// plot the curve, line & solution(s)
var textPoints='Intersections: ';
ctx.beginPath();
ctx.moveTo(p1.x,p1.y);
ctx.quadraticCurveTo(p2.x,p2.y,p3.x,p3.y);
ctx.moveTo(a1.x,a1.y);
ctx.lineTo(a2.x,a2.y);
ctx.stroke();
ctx.beginPath();
for(var i=0;i<points.length;i++){
  var p=points[i];
  ctx.moveTo(p.x,p.y);
  ctx.arc(p.x,p.y,4,0,Math.PI*2);
  ctx.closePath();
  textPoints+=' ['+parseInt(p.x)+','+parseInt(p.y)+']';
}
ctx.font='14px verdana';
ctx.fillText(textPoints,10,20);
ctx.fillStyle='red';
ctx.fill();

///////////////////////////////////////////////////

function calcQLintersects(p1, p2, p3, a1, a2) {
  var intersections=[];

  // inverse line normal
  var normal={
    x: a1.y-a2.y,
    y: a2.x-a1.x,
  }

  // Q-coefficients
  var c2={
    x: p1.x + p2.x*-2 + p3.x,
    y: p1.y + p2.y*-2 + p3.y
  }

  var c1={
    x: p1.x*-2 + p2.x*2,
    y: p1.y*-2 + p2.y*2,
  }

  var c0={
    x: p1.x,
    y: p1.y
  }

  // Transform to line 
  var coefficient=a1.x*a2.y-a2.x*a1.y;
  var a=normal.x*c2.x + normal.y*c2.y;
  var b=(normal.x*c1.x + normal.y*c1.y)/a;
  var c=(normal.x*c0.x + normal.y*c0.y + coefficient)/a;

  // solve the roots
  var roots=[];
  d=b*b-4*c;
  if(d>0){
    var e=Math.sqrt(d);
    roots.push((-b+Math.sqrt(d))/2);
    roots.push((-b-Math.sqrt(d))/2);
  }else if(d==0){
    roots.push(-b/2);
  }

  // calc the solution points
  for(var i=0;i<roots.length;i++){
    var minX=Math.min(a1.x,a2.x);
    var minY=Math.min(a1.y,a2.y);
    var maxX=Math.max(a1.x,a2.x);
    var maxY=Math.max(a1.y,a2.y);
    var t = roots[i];
    if (t>=0 && t<=1) {
      // possible point -- pending bounds check
      var point={
        x:lerp(lerp(p1.x,p2.x,t),lerp(p2.x,p3.x,t),t),
        y:lerp(lerp(p1.y,p2.y,t),lerp(p2.y,p3.y,t),t)
      }
      var x=point.x;
      var y=point.y;
      // bounds checks
      if(a1.x==a2.x && y>=minY && y<=maxY){  
        // vertical line
        intersections.push(point);
      }else if(a1.y==a2.y && x>=minX && x<=maxX){
        // horizontal line
        intersections.push(point);
      }else if(x>=minX && y>=minY && x<=maxX && y<=maxY){
        // line passed bounds check
        intersections.push(point);
      }
    }
  }
  return intersections;
}
body{ background-color: ivory; padding:10px; }
#canvas{border:1px solid red;}
<h4>Calculate intersections of QBez-Curve and Line</h4>
<canvas id="canvas" width=350 height=350></canvas>
like image 28
markE Avatar answered Nov 01 '22 03:11

markE