Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Calculate RGB value for a range of values to create heat map

I am trying to create a heat map with python. For this I have to assign an RGB value to every value in the range of possible values. I thought of changing the color from blue (minimal value) over green to red (maximal value).

The picture example below explains how I thought of the color composition: We have a range from 1 (pure blue) to 3 (pure red), 2 is in between resembled by green.

color composition RGB in range(1-3)

I read about linear interpolation and wrote a function that (more or less) handles the calculation for a certain value in the range between a minimum and a maximum and returns an RGB tuple. It uses if and elif conditions (which does not make me completely happy):

def convert_to_rgb(minimum, maximum, value):
    minimum, maximum = float(minimum), float(maximum)    
    halfmax = (minimum + maximum) / 2
    if minimum <= value <= halfmax:
        r = 0
        g = int( 255./(halfmax - minimum) * (value - minimum))
        b = int( 255. + -255./(halfmax - minimum)  * (value - minimum))
        return (r,g,b)    
    elif halfmax < value <= maximum:
        r = int( 255./(maximum - halfmax) * (value - halfmax))
        g = int( 255. + -255./(maximum - halfmax)  * (value - halfmax))
        b = 0
        return (r,g,b)

However I wonder if one could write a function for each color value without using if conditions. Does anybody have an idea? Thank you a lot!

like image 744
aldorado Avatar asked Dec 26 '13 23:12

aldorado


People also ask

Why do RGB values range from 0 to 255?

It really comes down to math and getting a value between 0-1. Since 255 is the maximum value, dividing by 255 expresses a 0-1 representation. Each channel (Red, Green, and Blue are each channels) is 8 bits, so they are each limited to 256, in this case 255 since 0 is included.

What do RGB values range from?

Each level is represented by the range of decimal numbers from 0 to 255 (256 levels for each color), equivalent to the range of binary numbers from 00000000 to 11111111, or hexadecimal 00 to FF. The total number of available colors is 256 x 256 x 256, or 16,777,216 possible colors.

How do you calculate RGB value?

The function R*0.2126+ G*0.7152+ B*0.0722 is said to calculate the perceived brightness (or equivalent grayscale color) for a given an RGB color. Assuming we use the interval [0,1] for all RGB values, we can calculate the following: yellow = RGB(1,1,0) => brightness=0.9278.


4 Answers

def rgb(minimum, maximum, value):
    minimum, maximum = float(minimum), float(maximum)
    ratio = 2 * (value-minimum) / (maximum - minimum)
    b = int(max(0, 255*(1 - ratio)))
    r = int(max(0, 255*(ratio - 1)))
    g = 255 - b - r
    return r, g, b
like image 168
John1024 Avatar answered Oct 17 '22 14:10

John1024


Here's another way to do it that, while not as absolutely short as possible, is much more general since it hasn't been hardcoded for your specific set of colors. This means it can also be used to linearly interpolate a specified range of values over a variably-sized palette of arbitrary colors.

Also note that colors could have been interpolated in other colorspaces giving results that may be more pleasing than in others. This is illustrated in the different results obtained from the two separate answers I submitted to a related question titled Range values to pseudocolor.

import sys
EPSILON = sys.float_info.epsilon  # Smallest possible difference.

def convert_to_rgb(minval, maxval, val, colors):
    # `colors` is a series of RGB colors delineating a series of
    # adjacent linear color gradients between each pair.

    # Determine where the given value falls proportionality within
    # the range from minval->maxval and scale that fractional value
    # by the total number in the `colors` palette.
    i_f = float(val-minval) / float(maxval-minval) * (len(colors)-1)

    # Determine the lower index of the pair of color indices this
    # value corresponds and its fractional distance between the lower
    # and the upper colors.
    i, f = int(i_f // 1), i_f % 1  # Split into whole & fractional parts.

    # Does it fall exactly on one of the color points?
    if f < EPSILON:
        return colors[i]
    else: # Return a color linearly interpolated in the range between it and 
          # the following one.
        (r1, g1, b1), (r2, g2, b2) = colors[i], colors[i+1]
        return int(r1 + f*(r2-r1)), int(g1 + f*(g2-g1)), int(b1 + f*(b2-b1))

if __name__ == '__main__':
    minval, maxval = 1, 3
    steps = 10
    delta = float(maxval-minval) / steps
    colors = [(0, 0, 255), (0, 255, 0), (255, 0, 0)]  # [BLUE, GREEN, RED]
    print('  Val       R    G    B')
    for i in range(steps+1):
        val = minval + i*delta
        r, g, b = convert_to_rgb(minval, maxval, val, colors)
        print('{:.3f} -> ({:3d}, {:3d}, {:3d})'.format(val, r, g, b))

Numeric output:

  Val       R    G    B
1.000 -> (  0,   0, 255)
1.200 -> (  0,  50, 204)
1.400 -> (  0, 101, 153)
1.600 -> (  0, 153, 101)
1.800 -> (  0, 204,  50)
2.000 -> (  0, 255,   0)
2.200 -> ( 51, 203,   0)
2.400 -> (102, 152,   0)
2.600 -> (153, 101,   0)
2.800 -> (203,  51,   0)
3.000 -> (255,   0,   0)

Here's the output visualized as a horizontal gradient:

horizontal gradient generated with function in answer

like image 34
martineau Avatar answered Oct 17 '22 16:10

martineau


You can often eliminate an if with an index into an array of two values. Python lacks a ternary conditional operator, but this works:

r = [red_curve_1, red_curve_2][value>=halfmax]
g = [green_curve_1, green_curve_2][value>=halfmax]
b = [blue_curve_1, blue_curve_2][value>=halfmax]

Replace the *_curve_1 and *_curve_2 expressions with the constants or slopes or curves either left or right of the midpoint, respectively.

I'll leave those substitutions to you, but for example:

  • red_curve_1 and blue_curve_2 are simply 0
  • green_curve_1 is 255*(value-minimum)/(halfmax-minimum)
  • etc.
like image 2
Darren Stone Avatar answered Oct 17 '22 14:10

Darren Stone


"We sense light intensity on a logarithmic scale – an exponential intensity ramp will be seen as a linear ramp" https://courses.cs.washington.edu/courses/cse455/09wi/Lects/lect11.pdf

From the https://en.wikipedia.org/wiki/RGB_color_model: "an input intensity RGB value of (0.5, 0.5, 0.5) only outputs about 22% of full brightness (1.0, 1.0, 1.0), instead of 50%"

This leads to the brownish smudge at 2.5 in @martineau example, where it should be yellow, and cyan at 1.5 in order to get a proper hue gradient.

So the formula you should use to get the gradient is not necessarily what you will want. (sorry for not answering your question directly)

But it might be handy to convert to the HSV or HLS color space model, and use H (for hue) and use that as input, and convert back to RGB for display purposes. ie:

colorsys.hsv_to_rgb(value, 1, 1)

https://docs.python.org/2/library/colorsys.html

like image 2
Maarten Albers Avatar answered Oct 17 '22 14:10

Maarten Albers