Beating the dead horse here. A typical (and fast) way of doing integer powers in C is this classic:
int64_t ipow(int64_t base, int exp){
int64_t result = 1;
while(exp){
if(exp & 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
However I needed a compile time integer power so I went ahead and made a recursive implementation using constexpr:
constexpr int64_t ipow_(int base, int exp){
return exp > 1 ? ipow_(base, (exp>>1) + (exp&1)) * ipow_(base, exp>>1) : base;
}
constexpr int64_t ipow(int base, int exp){
return exp < 1 ? 1 : ipow_(base, exp);
}
The second function is only to handle exponents less than 1 in a predictable way. Passing exp<0
is an error in this case.
I generate a vector of 10E6 random valued bases and exponents in the range [0,15] and time both algorithms on the vector (after doing a non-timed run to try to remove any caching effects). Without optimization the recursice method is twice as fast as the loop. But with -O3 (GCC) the loop is 4 times faster than the recursice method.
My question to you guys is this: Can any one come up with a faster ipow() function that handles exponent and bases of 0 and can be used as a constexpr
?
(Disclaimer: I don't need a faster ipow, I'm just interested to see what the smart people here can come up with).
pow() is function to get the power of a number, but we have to use #include<math. h> in c/c++ to use that pow() function. then two numbers are passed. Example – pow(4 , 2); Then we will get the result as 4^2, which is 16.
C pow() The pow() function computes the power of a number. The pow() function takes two arguments (base value and power value) and, returns the power raised to the base number. For example, [Mathematics] xy = pow(x, y) [In programming] The pow() function is defined in math.
A good optimizing compiler will transform tail-recursive functions to run as fast as imperative code. You can transform this function to be tail recursive with pumping. GCC 4.8.1 compiles this test program:
#include <cstdint>
constexpr int64_t ipow(int64_t base, int exp, int64_t result = 1) {
return exp < 1 ? result : ipow(base*base, exp/2, (exp % 2) ? result*base : result);
}
int64_t foo(int64_t base, int exp) {
return ipow(base, exp);
}
into a loop (See this at gcc.godbolt.org):
foo(long, int):
testl %esi, %esi
movl $1, %eax
jle .L4
.L3:
movq %rax, %rdx
imulq %rdi, %rdx
testb $1, %sil
cmovne %rdx, %rax
imulq %rdi, %rdi
sarl %esi
jne .L3
rep; ret
.L4:
rep; ret
vs. your while loop implementation:
ipow(long, int):
testl %esi, %esi
movl $1, %eax
je .L4
.L3:
movq %rax, %rdx
imulq %rdi, %rdx
testb $1, %sil
cmovne %rdx, %rax
imulq %rdi, %rdi
sarl %esi
jne .L3
rep; ret
.L4:
rep; ret
Instruction-by-instruction identical is good enough for me.
It seems that this is a standard problem with constexpr and template programming in C++. Due to compile time constraints, the constexpr version is slower than a normal version if executed at runtime. But overloading doesn't allows to chose the correct version. The standardization committee is working on this issue. See for example the following working document http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3583.pdf
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With