I was a looking at the source code of a project, and I noticed the following statement (both keyByte and codedByte are of type byte
):
return (byte)(keyByte - codedByte);
I'm trying now to understand what would the result be in cases where keyByte is smaller than codedByte, which results in a negative integer.
After some experiments to understand the result of casting a negative integer which has a value in the range [-255 : -1], I got the following results:
byte result = (byte) (-6); // result = 250
byte result = (byte) (-50); // result = 206
byte result = (byte) (-17); // result = 239
byte result = (byte) (-20); // result = 236
So, provided that -256 < a < 0
, I was able to determine the result by:
result = 256 + a;
My question is: should I always expect this to be the case?
C programming language is a machine-independent programming language that is mainly used to create many types of applications and operating systems such as Windows, and other complicated programs such as the Oracle database, Git, Python interpreter, and games and is considered a programming foundation in the process of ...
In the real sense it has no meaning or full form. It was developed by Dennis Ritchie and Ken Thompson at AT&T bell Lab. First, they used to call it as B language then later they made some improvement into it and renamed it as C and its superscript as C++ which was invented by Dr.
In C programming language, scanf is a function that stands for Scan Formatted String. It reads data from stdin (standard input stream i.e. usually keyboard) and then writes the result into the given arguments. It accepts character, string, and numeric data from the user using standard input.
C is a general-purpose language that most programmers learn before moving on to more complex languages. From Unix and Windows to Tic Tac Toe and Photoshop, several of the most commonly used applications today have been built on C. It is easy to learn because: A simple syntax with only 32 keywords.
Yes, that will always be the case (i.e. it is not simply dependent on your environment or compiler, but is defined as part of the C# language spec). See http://msdn.microsoft.com/en-us/library/aa691349(v=vs.71).aspx:
In an
unchecked
context, the result is truncated by discarding any high-order bits that do not fit in the destination type.
The next question is, if you take away the high-order bits of a negative int
between -256 and -1, and read it as a byte, what do you get? This is what you've already discovered through experimentation: it is 256 + x.
Note that endianness does not matter because we're discarding the high-order (or most significant) bits, not the "first" 24 bits. So regardless of which end we took it from, we're left with the least significant byte that made up that int.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With