When I use static variables in C++, I often end up wanting to initialize one variable passing another to its constructor. In other words, I want to create static instances that depend on each other.
Within a single .cpp or .h file this is not a problem: the instances will be created in the order they are declared. However, when you want to initialize a static instance with an instance in another compilation unit, the order seems impossible to specify. The result is that, depending on the weather, it can happen that the instance that depends on another is constructed, and only afterwards the other instance is constructed. The result is that the first instance is initialized incorrectly.
Does anyone know how to ensure that static objects are created in the correct order? I have searched a long time for a solution, trying all of them (including the Schwarz Counter solution), but I begin to doubt there is one that really works.
One possibility is the trick with the static function member:
Type& globalObject() { static Type theOneAndOnlyInstance; return theOneAndOnlyInstance; }
Indeed, this does work. Regrettably, you have to write globalObject().MemberFunction(), instead of globalObject.MemberFunction(), resulting in somewhat confusing and inelegant client code.
Update: Thank you for your reactions. Regrettably, it indeed seems like I have answered my own question. I guess I'll have to learn to live with it...
C++ guarantees that variables in a compilation unit (. cpp file) are initialised in order of declaration. For number of compilation units this rule works for each one separately (I mean static variables outside of classes). But, the order of initialization of variables, is undefined across different compilation units.
Static variables are initialized only once , at the start of the execution. These variables will be initialized first, before the initialization of any instance variables. A single copy to be shared by all instances of the class. A static variable can be accessed directly by the class name and doesn't need any object.
In the initializer list, the order of execution takes place according to the order of declaration of member variables. While using the initializer list for a class in C++, the order of declaration of member variables affects the output of the program. Program 1: C++
The static initialization order fiasco refers to the ambiguity in the order that objects with static storage duration in different translation units are initialized in.
You have answered your own question. Static initialization order is undefined, and the most elegant way around it (while still doing static initialization i.e. not refactoring it away completely) is to wrap the initialization in a function.
Read the C++ FAQ items starting from https://isocpp.org/wiki/faq/ctors#static-init-order
Maybe you should reconsider whether you need so many global static variables. While they can sometimes be useful, often it's much simpler to refactor them to a smaller local scope, especially if you find that some static variables depend on others.
But you're right, there's no way to ensure a particular order of initialization, and so if your heart is set on it, keeping the initialization in a function, like you mentioned, is probably the simplest way.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With