Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

C: How to wrap a float to the interval [-pi, pi)

I'm looking for some nice C code that will accomplish effectively:

while (deltaPhase >= M_PI) deltaPhase -= M_TWOPI; while (deltaPhase < -M_PI) deltaPhase += M_TWOPI; 

What are my options?

like image 253
P i Avatar asked Jan 08 '11 08:01

P i


2 Answers

Edit Apr 19, 2013:

Modulo function updated to handle boundary cases as noted by aka.nice and arr_sea:

static const double     _PI= 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348; static const double _TWO_PI= 6.2831853071795864769252867665590057683943387987502116419498891846156328125724179972560696;  // Floating-point modulo // The result (the remainder) has same sign as the divisor. // Similar to matlab's mod(); Not similar to fmod() -   Mod(-3,4)= 1   fmod(-3,4)= -3 template<typename T> T Mod(T x, T y) {     static_assert(!std::numeric_limits<T>::is_exact , "Mod: floating-point type expected");      if (0. == y)         return x;      double m= x - y * floor(x/y);      // handle boundary cases resulted from floating-point cut off:      if (y > 0)              // modulo range: [0..y)     {         if (m>=y)           // Mod(-1e-16             , 360.    ): m= 360.             return 0;          if (m<0 )         {             if (y+m == y)                 return 0  ; // just in case...             else                 return y+m; // Mod(106.81415022205296 , _TWO_PI ): m= -1.421e-14          }     }     else                    // modulo range: (y..0]     {         if (m<=y)           // Mod(1e-16              , -360.   ): m= -360.             return 0;          if (m>0 )         {             if (y+m == y)                 return 0  ; // just in case...             else                 return y+m; // Mod(-106.81415022205296, -_TWO_PI): m= 1.421e-14          }     }      return m; }  // wrap [rad] angle to [-PI..PI) inline double WrapPosNegPI(double fAng) {     return Mod(fAng + _PI, _TWO_PI) - _PI; }  // wrap [rad] angle to [0..TWO_PI) inline double WrapTwoPI(double fAng) {     return Mod(fAng, _TWO_PI); }  // wrap [deg] angle to [-180..180) inline double WrapPosNeg180(double fAng) {     return Mod(fAng + 180., 360.) - 180.; }  // wrap [deg] angle to [0..360) inline double Wrap360(double fAng) {     return Mod(fAng ,360.); } 
like image 197
Lior Kogan Avatar answered Oct 25 '22 21:10

Lior Kogan


One-liner constant-time solution:

Okay, it's a two-liner if you count the second function for [min,max) form, but close enough — you could merge them together anyways.

/* change to `float/fmodf` or `long double/fmodl` or `int/%` as appropriate */  /* wrap x -> [0,max) */ double wrapMax(double x, double max) {     /* integer math: `(max + x % max) % max` */     return fmod(max + fmod(x, max), max); } /* wrap x -> [min,max) */ double wrapMinMax(double x, double min, double max) {     return min + wrapMax(x - min, max - min); } 

Then you can simply use deltaPhase = wrapMinMax(deltaPhase, -M_PI, +M_PI).

The solutions is constant-time, meaning that the time it takes does not depend on how far your value is from [-PI,+PI) — for better or for worse.

Verification:

Now, I don't expect you to take my word for it, so here are some examples, including boundary conditions. I'm using integers for clarity, but it works much the same with fmod() and floats:

  • Positive x:
    • wrapMax(3, 5) == 3: (5 + 3 % 5) % 5 == (5 + 3) % 5 == 8 % 5 == 3
    • wrapMax(6, 5) == 1: (5 + 6 % 5) % 5 == (5 + 1) % 5 == 6 % 5 == 1
  • Negative x:
    • Note: These assume that integer modulo copies left-hand sign; if not, you get the above ("Positive") case.
    • wrapMax(-3, 5) == 2: (5 + (-3) % 5) % 5 == (5 - 3) % 5 == 2 % 5 == 2
    • wrapMax(-6, 5) == 4: (5 + (-6) % 5) % 5 == (5 - 1) % 5 == 4 % 5 == 4
  • Boundaries:
    • wrapMax(0, 5) == 0: (5 + 0 % 5) % 5 == (5 + 0) % 5 == 5 % 5 == 0
    • wrapMax(5, 5) == 0: (5 + 5 % 5) % 5 == (5 + 0) % 5== 5 % 5 == 0
    • wrapMax(-5, 5) == 0: (5 + (-5) % 5) % 5 == (5 + 0) % 5 == 5 % 5 == 0
      • Note: Possibly -0 instead of +0 for floating-point.

The wrapMinMax function works much the same: wrapping x to [min,max) is the same as wrapping x - min to [0,max-min), and then (re-)adding min to the result.

I don't know what would happen with a negative max, but feel free to check that yourself!

like image 45
Tim Čas Avatar answered Oct 25 '22 21:10

Tim Čas