I read an article (1.5 years old http://www.drdobbs.com/parallel/cache-friendly-code-solving-manycores-ne/240012736) which talks about cache performance and size of data. They show the following code which they say they ran on an i7 (sandy bridge)
static volatile int array[Size];
static void test_function(void)
{
for (int i = 0; i < Iterations; i++)
for (int x = 0; x < Size; x++)
array[x]++;
}
They make the claim that if they keep Size*Iterations constant, increasing Size, when the size in memory of array increases beyond the L2 cache size they observe a huge spike in time taken to execute (10x).
As an exercise for myself I wanted to try this to see if I could reproduce their results for my machine . (i7 3770k, win7, visual c++ 2012 compiler, Win32 debug mode, no optimizations enabled). To my surprise though, I am not able to see an increase in time taken to execute (even beyond the L3 cache size) which made me think the compiler was somehow optimizing this code. But I dont see any optimizations either. The only change in speed i see is that below the word size of my machine it takes slightly longer. Below are my timings, code listing, and pertinent disassembly.
Does anyone know why:
1) Why the time taken does not increase at all regardless of the size of my array? Or how I could find out?
2) Why does the time taken start high and then decrease until the cache line size is reached, shouldn't more iterations be processed without reading from cache if the data is less than the line size?
Timings:
Size=1,Iterations=1073741824, Time=3829
Size=2,Iterations=536870912, Time=2625
Size=4,Iterations=268435456, Time=2563
Size=16,Iterations=67108864, Time=2906
Size=32,Iterations=33554432, Time=3469
Size=64,Iterations=16777216, Time=3250
Size=256,Iterations=4194304, Time=3140
Size=1024,Iterations=1048576, Time=3110
Size=2048,Iterations=524288, Time=3187
Size=4096,Iterations=262144, Time=3078
Size=8192,Iterations=131072, Time=3125
Size=16384,Iterations=65536, Time=3109
Size=32768,Iterations=32768, Time=3078
Size=65536,Iterations=16384, Time=3078
Size=262144,Iterations=4096, Time=3172
Size=524288,Iterations=2048, Time=3109
Size=1048576,Iterations=1024, Time=3094
Size=2097152,Iterations=512, Time=3313
Size=4194304,Iterations=256, Time=3391
Size=8388608,Iterations=128, Time=3312
Size=33554432,Iterations=32, Time=3109
Size=134217728,Iterations=8, Time=3515
Size=536870912,Iterations=2, Time=3532
code:
#include <string>
#include <cassert>
#include <windows.h>
template <unsigned int SIZE, unsigned int ITERATIONS>
static void test_body(volatile char* array)
{
for (unsigned int i = 0; i < ITERATIONS; i++)
{
for (unsigned int x = 0; x < SIZE; x++)
{
array[x]++;
}
}
}
template <unsigned int SIZE, unsigned int ITERATIONS>
static void test_function()
{
assert(SIZE*ITERATIONS == 1024*1024*1024);
static volatile char array[SIZE];
test_body<SIZE, 1>(array); //warmup
DWORD beginTime = GetTickCount();
test_body<SIZE, ITERATIONS>(array);
DWORD endTime= GetTickCount();
printf("Size=%u,Iterations=%u, Time=%d\n", SIZE,ITERATIONS, endTime-beginTime);
}
int main()
{
enum { eIterations= 1024*1024*1024};
test_function<1, eIterations>();
test_function<2, eIterations/2>();
test_function<4, eIterations/4>();
test_function<16, eIterations/16>();
test_function<32, eIterations/ 32>();
test_function<64, eIterations/ 64>();
test_function<256, eIterations/ 256>();
test_function<1024, eIterations/ 1024>();
test_function<2048, eIterations/ 2048>();
test_function<4096, eIterations/ 4096>();
test_function<8192, eIterations/ 8192>();
test_function<16384, eIterations/ 16384>();
test_function<32768, eIterations/ 32768>();
test_function<65536, eIterations/ 65536>();
test_function<262144, eIterations/ 262144>();
test_function<524288, eIterations/ 524288>();
test_function<1048576, eIterations/ 1048576>();
test_function<2097152, eIterations/ 2097152>();
test_function<4194304, eIterations/ 4194304>();
test_function<8388608, eIterations/ 8388608>();
test_function<33554432, eIterations/ 33554432>();
test_function<134217728, eIterations/ 134217728>();
test_function<536870912, eIterations/ 536870912>();
}
Disassembly
for (unsigned int i = 0; i < ITERATIONS; i++)
00281A59 mov dword ptr [ebp-4],0
00281A60 jmp test_body<536870912,2>+1Bh (0281A6Bh)
00281A62 mov eax,dword ptr [ebp-4]
00281A65 add eax,1
00281A68 mov dword ptr [ebp-4],eax
00281A6B cmp dword ptr [ebp-4],2
00281A6F jae test_body<536870912,2>+53h (0281AA3h)
{
for (unsigned int x = 0; x < SIZE; x++)
00281A71 mov dword ptr [ebp-8],0
00281A78 jmp test_body<536870912,2>+33h (0281A83h)
00281A7A mov eax,dword ptr [ebp-8]
{
for (unsigned int x = 0; x < SIZE; x++)
00281A7D add eax,1
00281A80 mov dword ptr [ebp-8],eax
00281A83 cmp dword ptr [ebp-8],20000000h
00281A8A jae test_body<536870912,2>+51h (0281AA1h)
{
array[x]++;
00281A8C mov eax,dword ptr [array]
00281A8F add eax,dword ptr [ebp-8]
00281A92 mov cl,byte ptr [eax]
00281A94 add cl,1
00281A97 mov edx,dword ptr [array]
00281A9A add edx,dword ptr [ebp-8]
00281A9D mov byte ptr [edx],cl
}
00281A9F jmp test_body<536870912,2>+2Ah (0281A7Ah)
}
00281AA1 jmp test_body<536870912,2>+12h (0281A62h)
TL;DR: Your test is not correct test for cache latency or speed. Instead it measures some problems of chopping complex code through OoO CPU pipeline.
Use right tests for measuring cache and memory latency: lat_mem_rd from lmbench; and right tests for speed (bandwidth) measurements: STREAM benchmark for memory speed; tests from memtest86 for cache speed with rep movsl
main operation)
Also, in modern (2010 and newer) desktop/sever CPUs there is hardware prefetch logic built in near L1 and L2 caches which will detect linear access pattern and preload data from outer caches into inner before you will ask for this data: Intel Optimization Manual - 7.2 Hardware prefetching of data, page 365; intel.com blog, 2009. It is hard to disable all hardware prefetches (SO Q/A 1, SO Q/A 2)
Long story:
I will try to do several measurements of similar test with perf
performance monitoring tool in Linux (aka perf_events
). The code is based on program from Joky (array of 32-bit ints, not of chars), and was separated into several binaries as: a5
is for size 2^5 = 32; a10
=> 2^10 = 1024 (4 KB); a15
=> 2^15 = 32768, a20
(1 million of ints = 4 MB) and a25
(32 millions of ints = 128MB). The cpu is i7-2600 quad-core Sandy Bridge 3.4 GHz.
Let's start with basic perf stat
with default event set (some lines are skipped). I selected 2^10 (4 KB) and 2^20 (4 MB)
$ perf stat ./a10
Size=1024 ITERATIONS=1048576, TIME=2372.09 ms
Performance counter stats for './a10':
276 page-faults # 0,000 M/sec
8 238 473 169 cycles # 3,499 GHz
4 936 244 310 stalled-cycles-frontend # 59,92% frontend cycles idle
415 849 629 stalled-cycles-backend # 5,05% backend cycles idle
11 832 421 238 instructions # 1,44 insns per cycle
# 0,42 stalled cycles per insn
1 078 974 782 branches # 458,274 M/sec
1 080 091 branch-misses # 0,10% of all branches
$ perf stat ./a20
Size=1048576 ITERATIONS=1024, TIME=2432.4 ms
Performance counter stats for './a20':
2 321 page-faults # 0,001 M/sec
8 487 656 735 cycles # 3,499 GHz
5 184 295 720 stalled-cycles-frontend # 61,08% frontend cycles idle
663 245 253 stalled-cycles-backend # 7,81% backend cycles idle
11 836 712 988 instructions # 1,39 insns per cycle
# 0,44 stalled cycles per insn
1 077 257 745 branches # 444,104 M/sec
30 601 branch-misses # 0,00% of all branches
What we can see here? Instruction counts are very close (because Size*Iterations is constant), cycle count and time are close too. Both examples have 1 billion branches with 99% good prediction. But there is very high 60% stall count for frontend and 5-8% for backend. Frontend stalls are stalls in the instruction fetch and decode, it can be hard to tell why, but for your code frontend can't decode 4 instructions per tick (page B-41 of Intel optimisation manual, section B.3 - "Performance tuning techniques for ... Sandy Bridge", subsection B.3.2 Hierarchical Top-Down Performance Characterization ...)
$ perf record -e stalled-cycles-frontend ./a20
Size=1048576 ITERATIONS=1024, TIME=2477.65 ms
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.097 MB perf.data (~4245 samples) ]
$ perf annotate -d a20|cat
Percent | Source code & Disassembly of a20
------------------------------------------------
: 08048e6f <void test_body<1048576u, 1024u>(int volatile*)>:
10.43 : 8048e87: mov -0x8(%ebp),%eax
1.10 : 8048e8a: lea 0x0(,%eax,4),%edx
0.16 : 8048e91: mov 0x8(%ebp),%eax
0.78 : 8048e94: add %edx,%eax
6.87 : 8048e96: mov (%eax),%edx
52.53 : 8048e98: add $0x1,%edx
9.89 : 8048e9b: mov %edx,(%eax)
14.15 : 8048e9d: addl $0x1,-0x8(%ebp)
2.66 : 8048ea1: mov -0x8(%ebp),%eax
1.39 : 8048ea4: cmp $0xfffff,%eax
Or here with raw opcodes (objdump -d
), some have rather complicated indexing, so possible they can't be handled by 3 simple decoders and waits for the only complex decoder (image is there: http://www.realworldtech.com/sandy-bridge/4/)
8048e87: 8b 45 f8 mov -0x8(%ebp),%eax
8048e8a: 8d 14 85 00 00 00 00 lea 0x0(,%eax,4),%edx
8048e91: 8b 45 08 mov 0x8(%ebp),%eax
8048e94: 01 d0 add %edx,%eax
8048e96: 8b 10 mov (%eax),%edx
8048e98: 83 c2 01 add $0x1,%edx
8048e9b: 89 10 mov %edx,(%eax)
8048e9d: 83 45 f8 01 addl $0x1,-0x8(%ebp)
8048ea1: 8b 45 f8 mov -0x8(%ebp),%eax
8048ea4: 3d ff ff 0f 00 cmp $0xfffff,%eax
Backend stalls are stalls created by waiting for memory or cache (the thing you are interested in when measuring caches) and by internal execution core stalls:
$ perf record -e stalled-cycles-backend ./a20
Size=1048576 ITERATIONS=1024, TIME=2480.09 ms
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.095 MB perf.data (~4149 samples) ]
$ perf annotate -d a20|cat
4.25 : 8048e96: mov (%eax),%edx
58.68 : 8048e98: add $0x1,%edx
8.86 : 8048e9b: mov %edx,(%eax)
3.94 : 8048e9d: addl $0x1,-0x8(%ebp)
7.66 : 8048ea1: mov -0x8(%ebp),%eax
7.40 : 8048ea4: cmp $0xfffff,%eax
Most backend stalls are reported for add 0x1,%edx
because it is the consumer of data, loaded from the array in previous command. With store to array they account for 70% of backend stalls, or if we multiply if for total backend stall portion in the program (7%), for the 5% of all stalls. Or in other words, the cache is faster than your program. Now we can answer to your first question:
Why the time taken does not increase at all regardless of the size of my array?
You test is so bad (not optimized), that you are trying to measure caches, but they have only 5% slowdown on total run time. Your test is so unstable (noisy) that you will not see this 5% effect.
With custom perf stat
runs we also can measure cache request-to-miss ratio. For 4 KB program L1 data cache serves 99,99% of all loads and 99,999% of all stores. We can note that your incorrect test generate several times more requests to cache than it is needed to walk on array and increment every element (1 billion loads + 1 billion stores). Additional accesses are for working with local variables like x
, they always served by cache because their address is constant)
$ perf stat -e 'L1-dcache-loads,L1-dcache-load-misses,L1-dcache-stores,L1-dcache-store-misses' ./a10
Size=1024 ITERATIONS=1048576, TIME=2412.25 ms
Performance counter stats for './a10':
5 375 195 765 L1-dcache-loads
364 140 L1-dcache-load-misses # 0,01% of all L1-dcache hits
2 151 408 053 L1-dcache-stores
13 350 L1-dcache-store-misses
For 4 MB program hit rate is many-many times worse. 100 times more misses! Now 1.2 % of all memory requests are served not by L1 but L2.
$ perf stat -e 'L1-dcache-loads,L1-dcache-load-misses,L1-dcache-stores,L1-dcache-store-misses' ./a20
Size=1048576 ITERATIONS=1024, TIME=2443.92 ms
Performance counter stats for './a20':
5 378 035 007 L1-dcache-loads
67 725 008 L1-dcache-load-misses # 1,26% of all L1-dcache hits
2 152 183 588 L1-dcache-stores
67 266 426 L1-dcache-store-misses
Isn't it a case when we want to notice how cache latency goes from 4 cpu ticks up to 12 (3 times longer), and when this change affects only 1.2% of cache requests, and when our program has only 7% slowdown sensitive to the cache latencies ???
What if we will use bigger data set? Ok, here is a25 (2^25 of 4-byte ints = 128 MB, several times more than cache size):
$ perf stat ./a25
Size=134217728 ITERATIONS=8, TIME=2437.25 ms
Performance counter stats for './a25':
262 417 page-faults # 0,090 M/sec
10 214 588 827 cycles # 3,499 GHz
6 272 114 853 stalled-cycles-frontend # 61,40% frontend cycles idle
1 098 632 880 stalled-cycles-backend # 10,76% backend cycles idle
13 683 671 982 instructions # 1,34 insns per cycle
# 0,46 stalled cycles per insn
1 274 410 549 branches # 436,519 M/sec
315 656 branch-misses # 0,02% of all branches
$ perf stat -e 'L1-dcache-loads,L1-dcache-load-misses,L1-dcache-stores,L1-dcache-store-misses' ./a25
Size=134217728 ITERATIONS=8, TIME=2444.13 ms
Performance counter stats for './a25':
6 138 410 226 L1-dcache-loads
77 025 747 L1-dcache-load-misses # 1,25% of all L1-dcache hits
2 515 141 824 L1-dcache-stores
76 320 695 L1-dcache-store-misses
Almost the same L1 miss rate, and more backend stalls. I was able to get stats on "cache-references,cache-misses" events ans I suggest they are about L3 cache (there is several times more requests to L2):
$ perf stat -e 'cache-references,cache-misses' ./a25
Size=134217728 ITERATIONS=8, TIME=2440.71 ms
Performance counter stats for './a25':
17 053 482 cache-references
11 829 118 cache-misses # 69,365 % of all cache refs
So, miss rate is high, but the test does 1 billion of (useful) loads, and only 0.08 billion of them misses L1. 0.01 billion of requests are served by memory. Memory latency is around 230 cpu clocks instead of 4 clock L1 latency. Is the test able to see this? May be, if the noise is low.
Some results (OSX, Sandy Bridge):
Size=1 ITERATIONS=1073741824, TIME=2416.06 ms
Size=2 ITERATIONS=536870912, TIME=1885.46 ms
Size=4 ITERATIONS=268435456, TIME=1782.92 ms
Size=16 ITERATIONS=67108864, TIME=2023.71 ms
Size=32 ITERATIONS=33554432, TIME=2184.99 ms
Size=64 ITERATIONS=16777216, TIME=2464.09 ms
Size=256 ITERATIONS=4194304, TIME=2358.31 ms
Size=1024 ITERATIONS=1048576, TIME=2333.77 ms
Size=2048 ITERATIONS=524288, TIME=2340.16 ms
Size=4096 ITERATIONS=262144, TIME=2349.97 ms
Size=8192 ITERATIONS=131072, TIME=2346.96 ms
Size=16384 ITERATIONS=65536, TIME=2350.3 ms
Size=32768 ITERATIONS=32768, TIME=2348.71 ms
Size=65536 ITERATIONS=16384, TIME=2355.28 ms
Size=262144 ITERATIONS=4096, TIME=2358.97 ms
Size=524288 ITERATIONS=2048, TIME=2476.46 ms
Size=1048576 ITERATIONS=1024, TIME=2429.07 ms
Size=2097152 ITERATIONS=512, TIME=2427.09 ms
Size=4194304 ITERATIONS=256, TIME=2443.42 ms
Size=8388608 ITERATIONS=128, TIME=2435.54 ms
Size=33554432 ITERATIONS=32, TIME=2389.08 ms
Size=134217728 ITERATIONS=8, TIME=2444.43 ms
Size=536870912 ITERATIONS=2, TIME=2600.91 ms
Size=1 ITERATIONS=1073741824, TIME=2197.12 ms
Size=2 ITERATIONS=536870912, TIME=996.409 ms
Size=4 ITERATIONS=268435456, TIME=606.252 ms
Size=16 ITERATIONS=67108864, TIME=306.904 ms
Size=32 ITERATIONS=33554432, TIME=897.692 ms
Size=64 ITERATIONS=16777216, TIME=847.794 ms
Size=256 ITERATIONS=4194304, TIME=802.136 ms
Size=1024 ITERATIONS=1048576, TIME=761.971 ms
Size=2048 ITERATIONS=524288, TIME=760.136 ms
Size=4096 ITERATIONS=262144, TIME=759.149 ms
Size=8192 ITERATIONS=131072, TIME=749.881 ms
Size=16384 ITERATIONS=65536, TIME=756.672 ms
Size=32768 ITERATIONS=32768, TIME=759.565 ms
Size=65536 ITERATIONS=16384, TIME=754.81 ms
Size=262144 ITERATIONS=4096, TIME=745.899 ms
Size=524288 ITERATIONS=2048, TIME=749.527 ms
Size=1048576 ITERATIONS=1024, TIME=758.009 ms
Size=2097152 ITERATIONS=512, TIME=776.671 ms
Size=4194304 ITERATIONS=256, TIME=778.963 ms
Size=8388608 ITERATIONS=128, TIME=783.191 ms
Size=33554432 ITERATIONS=32, TIME=770.603 ms
Size=134217728 ITERATIONS=8, TIME=785.703 ms
Size=536870912 ITERATIONS=2, TIME=911.875 ms
(Note how the first one is really slower, I feel like there may be a mis-speculation somewhere around load-store forwarding...)
Interestingly turning the optimizations on and removing the volatile shows a somehow nicer curve:
Size=1 ITERATIONS=1073741824, TIME=0 ms
Size=2 ITERATIONS=536870912, TIME=0 ms
Size=4 ITERATIONS=268435456, TIME=0 ms
Size=16 ITERATIONS=67108864, TIME=0.001 ms
Size=32 ITERATIONS=33554432, TIME=125.581 ms
Size=64 ITERATIONS=16777216, TIME=140.654 ms
Size=256 ITERATIONS=4194304, TIME=217.559 ms
Size=1024 ITERATIONS=1048576, TIME=168.155 ms
Size=2048 ITERATIONS=524288, TIME=159.031 ms
Size=4096 ITERATIONS=262144, TIME=154.373 ms
Size=8192 ITERATIONS=131072, TIME=153.858 ms
Size=16384 ITERATIONS=65536, TIME=156.819 ms
Size=32768 ITERATIONS=32768, TIME=156.505 ms
Size=65536 ITERATIONS=16384, TIME=156.921 ms
Size=262144 ITERATIONS=4096, TIME=215.911 ms
Size=524288 ITERATIONS=2048, TIME=220.298 ms
Size=1048576 ITERATIONS=1024, TIME=235.648 ms
Size=2097152 ITERATIONS=512, TIME=320.284 ms
Size=4194304 ITERATIONS=256, TIME=409.433 ms
Size=8388608 ITERATIONS=128, TIME=431.743 ms
Size=33554432 ITERATIONS=32, TIME=429.436 ms
Size=134217728 ITERATIONS=8, TIME=430.052 ms
Size=536870912 ITERATIONS=2, TIME=535.773 ms
To help anyone reproduce the "issue", here is some standard (I hope) C++ code:
#include <string>
#include <iostream>
#include <chrono>
#include <cstdlib>
#include <memory>
template <unsigned int SIZE, unsigned int ITERATIONS>
void test_body(volatile int *array) {
for (int i = 0; i < ITERATIONS; i++)
{
for (int x = 0; x < SIZE; x++)
{
array[x]++;
}
}
}
template <unsigned int SIZE, unsigned int ITERATIONS>
static void test_function()
{
static_assert(SIZE*ITERATIONS == 1024*1024*1024, "SIZE MISMATCH");
std::unique_ptr<volatile int[]> array { new int[SIZE] };
// Warmup
test_body<SIZE, 1>(array.get());
auto start = std::chrono::steady_clock::now();
test_body<SIZE, ITERATIONS>(array.get());
auto end = std::chrono::steady_clock::now();
auto diff = end - start;
std::cout << "Size=" << SIZE << " ITERATIONS=" << ITERATIONS << ", TIME=" << std::chrono::duration <double, std::milli> (diff).count() << " ms" << std::endl;
}
int main()
{
enum { eIterations= 1024*1024*1024};
test_function<1, eIterations>();
test_function<2, eIterations/2>();
test_function<4, eIterations/4>();
test_function<16, eIterations/16>();
test_function<32, eIterations/ 32>();
test_function<64, eIterations/ 64>();
test_function<256, eIterations/ 256>();
test_function<1024, eIterations/ 1024>();
test_function<2048, eIterations/ 2048>();
test_function<4096, eIterations/ 4096>();
test_function<8192, eIterations/ 8192>();
test_function<16384, eIterations/ 16384>();
test_function<32768, eIterations/ 32768>();
test_function<65536, eIterations/ 65536>();
test_function<262144, eIterations/ 262144>();
test_function<524288, eIterations/ 524288>();
test_function<1048576, eIterations/ 1048576>();
test_function<2097152, eIterations/ 2097152>();
test_function<4194304, eIterations/ 4194304>();
test_function<8388608, eIterations/ 8388608>();
test_function<33554432, eIterations/ 33554432>();
test_function<134217728, eIterations/ 134217728>();
test_function<536870912, eIterations/ 536870912>();
}
It seems clear that constant time implies a constant instruction execution rate. To measure cache/RAM speed, data transfer instructions should predominate and results require further clarification than run time, like MB/second and instructions per second. You need something like my BusSpeed benchmark (Google for Roy BusSpeed benchmark or BusSpd2k for source codes and results with versions for Windows, Linux and Android). The original used assembly code with instructions like:
"add edx,ecx" \
"mov ebx,[edi]" \
"mov ecx,ebx" \
"lp: and ebx,[edx]" \
"and ecx,[edx+4]" \
"and ebx,[edx+8]" \
"and ecx,[edx+12]" \
"and ebx,[edx+16]" \
"and ecx,[edx+20]" \
"and ebx,[edx+24]" \
"and ecx,[edx+28]" \
"and ebx,[edx+32]" \
"and ecx,[edx+36]" \
"and ebx,[edx+40]" \
To
"and ecx,[edx+236]" \
"and ebx,[edx+240]" \
"and ecx,[edx+244]" \
"and ebx,[edx+248]" \
"and ecx,[edx+252]" \
"add edx,256" \
"dec eax" \
"jnz lp" \
"and ebx,ecx" \
"mov [edi],ebx" \
Later versions used C as follows
void inc1word()
{
int i, j;
for(j=0; j<passes1; j++)
{
for (i=0; i<wordsToTest; i=i+64)
{
andsum1 = andsum1 & array[i ] & array[i+1 ] & array[i+2 ] & array[i+3 ]
& array[i+4 ] & array[i+5 ] & array[i+6 ] & array[i+7 ]
& array[i+8 ] & array[i+9 ] & array[i+10] & array[i+11]
& array[i+12] & array[i+13] & array[i+14] & array[i+15]
& array[i+16] & array[i+17] & array[i+18] & array[i+19]
& array[i+20] & array[i+21] & array[i+22] & array[i+23]
& array[i+24] & array[i+25] & array[i+26] & array[i+27]
& array[i+28] & array[i+29] & array[i+30] & array[i+31]
& array[i+32] & array[i+33] & array[i+34] & array[i+35]
& array[i+36] & array[i+37] & array[i+38] & array[i+39]
& array[i+40] & array[i+41] & array[i+42] & array[i+43]
& array[i+44] & array[i+45] & array[i+46] & array[i+47]
& array[i+48] & array[i+49] & array[i+50] & array[i+51]
& array[i+52] & array[i+53] & array[i+54] & array[i+55]
& array[i+56] & array[i+57] & array[i+58] & array[i+59]
& array[i+60] & array[i+61] & array[i+62] & array[i+63];
}
}
}
The benchmark measures MB/second of caches and RAM, including skipped sequential addressing to see where data is read in bursts. Example results follow. Note burst reading effects and reading to two different registers (Reg2, from assembly code version) can be faster than to 1. Then, in this case, loading every word to 1 register (AndI, Reg1, Inc4 bytes) produces almost constant speeds (around 1400 MIPS). So, even a long sequence of instructions might not suit particular pipelines). The way to find out is to run a wider variation of your tests.
######################################################################### Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz Measured 2807 MHz
Windows Bus Speed Test Version 2.2 by Roy Longbottom
Minimum 0.100 seconds per test, Start Fri Jul 30 16:43:56 2010
MovI MovI MovI MovI MovI MovI AndI AndI MovM MovM
Memory Reg2 Reg2 Reg2 Reg2 Reg1 Reg2 Reg1 Reg2 Reg1 Reg8
KBytes Inc64 Inc32 Inc16 Inc8 Inc4 Inc4 Inc4 Inc4 Inc8 Inc8
Used MB/S MB/S MB/S MB/S MB/S MB/S MB/S MB/S MB/S MB/S
4 10025 10800 11262 11498 11612 11634 5850 11635 23093 23090
8 10807 11267 11505 11627 11694 11694 5871 11694 23299 23297
16 11251 11488 11620 11614 11712 11719 5873 11718 23391 23398
32 9893 9853 10890 11170 11558 11492 5872 11466 21032 21025
64 3219 4620 7289 9479 10805 10805 5875 10797 14426 14426
128 3213 4805 7305 9467 10811 10810 5875 10805 14442 14408
256 3144 4592 7231 9445 10759 10733 5870 10743 14336 14337
512 2005 3497 5980 9056 10466 10467 5871 10441 13906 13905
1024 2003 3482 5974 9017 10468 10466 5874 10467 13896 13818
2048 2004 3497 5958 9088 10447 10448 5870 10447 13857 13857
4096 1963 3398 5778 8870 10328 10328 5851 10328 13591 13630
8192 1729 3045 5322 8270 9977 9963 5728 9965 12923 12892
16384 692 1402 2495 4593 7811 7782 5406 7848 8335 8337
32768 695 1406 2492 4584 7820 7826 5401 7792 8317 8322
65536 695 1414 2488 4584 7823 7826 5403 7800 8321 8321
131072 696 1402 2491 4575 7827 7824 5411 7846 8322 8323
262144 696 1413 2498 4594 7791 7826 5409 7829 8333 8334
524288 693 1416 2498 4595 7841 7842 5411 7847 8319 8285
1048576 704 1415 2478 4591 7845 7840 5410 7853 8290 8283
End of test Fri Jul 30 16:44:29 2010
MM uses 1 and 8 MMX registers, later versions use SSE
Source codes and execution files are free for anyone to play with. Files are in following where array declarations are shown:
Windows http://www.roylongbottom.org.uk/busspd2k.zip
xx = (int *)VirtualAlloc(NULL, useMemK*1024+256, MEM_COMMIT, PAGE_READWRITE);
Linux http://www.roylongbottom.org.uk/memory_benchmarks.tar.gz
#ifdef Bits64
array = (long long *)_mm_malloc(memoryKBytes[ipass-1]*1024, 16);
#else
array = (int *)_mm_malloc(memoryKBytes[ipass-1]*1024, 16);
Results and other links (MP version, Android) are in:
http://www.roylongbottom.org.uk/busspd2k%20results.htm
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With