Considering the tables given at the end of this question, I would like an algorithm or a simple solution that returns a nested tree from a YAML
description. Using yaml format is an optional need. In fact, the output I need is an array of ordered hashes that may or may not contain nested ordered hashes or arrays of ordered hashes.
In short, I am talking about a tree-like structure.
For a better understanding of my question I will treat a simple example that covers all my needs. Actually this example is the one I am using to implement this algorithm.
I decided to ask this question in parallel with my own investigations as my knowledge in Perl is limited. I don't want to dig into the wrong tunnel and that's why I am asking for help.
I am currently focussing on the DBI module. I tried to look at other modules such as DBIx::Tree::NestedSet
, but I don't think it is what I need.
So, let's get down to the details of my example.
The inital idea is to write a perl program that takes a yaml description and outputs the extracted data.
This input description follows simple rules:
DBI::selectall_hashref
. If this field is omitted the output is listed as an array of ordered hashes.array: name
displays the list of names
XML
, YAML
or JSON
. I primarly focus on the
YAML
format as it can be easily translated. When omitted, the default ouput is YAML
.tabs
or tab
value is also supported.In addition, we know that in Perl hashes are not ordered. Here, the output keys order is important and should appear as they appear in the sql query.
From this I simpy use the YAML
module :(
In summary, in the end we will just execute this command:
$ cat desc.yml | ./fetch > data.yml
The desc.yml
description is given below:
---
connect: "dbi:SQLite:dbname=einstein-puzzle.sqlite"
ident: 4
query:
- sql: SELECT * from people
hide:
- pet_id
- house_id
- id
subquery:
- key: brevage
bind: id
sql: |
SELECT name, calories, potassium FROM drink
LEFT JOIN people_has_drink ON drink.id = people_has_drink.id_drink
WHERE people_has_drink.id_people = 1
hash:
- name
- key: house
sql: SELECT color as paint, size, id from house WHERE id = ?
hide: id
bind: paint
subquery:
- key: color
sql: SELECT name, ral, hex from color WHERE short LIKE ?
bind: color
- key: pet
sql: SELECT name from pet WHERE id = ?
bind: pet_id
list: name
From the description above, the output data would be this:
---
- nationality: Norvegian
smoke: Dunhill
brevage:
orange juice:
calories: 45
potassium: 200 mg
water:
calories: 0
potassium: 3 mg
house:
color:
name: Zinc yellow
ral: RAL 1018
hex: #F8F32B
paint: yellow
size: small
pet:
- cats
- nationality: Brit
smoke: Pall Mall
brevage:
milk:
calories: 42
potassium: 150 mg
house:
color:
name: Vermilion
ral: RAL 2002
hex: #CB2821
paint: red
size: big
pet:
- birds
- phasmatodea
I still did not fully implemented the nested queries. My current sate is given here:
#!/usr/bin/env perl
use 5.010;
use strict;
use warnings;
use DBI;
use YAML;
use Data::Dumper;
use Tie::IxHash;
# Read configuration and databse connection
my %yml = %{ Load(do { local $/; <DATA>}) };
my $dbh = DBI->connect($yml{connect});
# Fill the bind values of the first query with command-line information
my %bind;
for(@ARGV) {
next unless /--(\w+)=(.*)/;
$bind{$1} = $2;
}
my $q0 = $yml{query}[0];
if ($q0->{bind} and keys %bind > 0) {
$q0->{bind_values} = arrayref($q0->{bind});
$q0->{bind_values}[$_] = $bind{$q0->{bind}[$_]} foreach (0 .. @{$q0->{bind}} - 1);
}
# Fetch all data from the database recursively
my $out = fetch($q0);
sub fetch {
# As long we have a query, one processes it
my $query = shift;
return undef unless $query;
$query->{bind_values} = [] unless ref $query->{bind_values} eq 'ARRAY';
# Execute SQL query
my $sth = $dbh->prepare($query->{sql});
$sth->execute(@{$query->{bind_values}});
my @columns = @{$sth->{NAME}};
# Fetch all the current level's data and preserve columns order
my @return;
for my $row (@{$sth->fetchall_arrayref()}) {
my %data;
tie %data, 'Tie::IxHash';
$data{$columns[$_]} = $row->[$_] for (0 .. $#columns);
for my $subquery (@{ $query->{subquery} }) {
my @bind;
push @bind, $data{$_} for (@{ arrayref($subquery->{bind}) });
$subquery->{bind_values} = \@bind;
my $sub = fetch($subquery);
# Present output as a list
if ($subquery->{list}) {
#if ( map ( $query->{list} eq $_ , keys $sub ) )
my @list;
for (@$sub) {
push @list, $_->{$subquery->{list}};
}
$sub = \@list;
}
if ($subquery->{key}) {
$data{$subquery->{key}} = $sub;
} else {
die "[Error] Key is missing for query '$subquery->{sql}'";
}
}
# Remove unwanted columns from the output
if ($query->{hide}) {
delete $data{$_} for( @{ arrayref($query->{hide}) } );
}
push @return, \%data;
}
\@return;
}
DumpYaml($out);
sub arrayref {
my $ref = shift;
return (ref $ref ne 'ARRAY') ? [$ref] : $ref;
}
sub DumpYaml {
# I am not happy with this current dumper. I cannot specify the indent and it does
# not preserve the extraction order
print Dump shift;
}
__DATA__
---
connect: "dbi:SQLite:dbname=einstein-puzzle.sqlite"
ident: 4
query:
- sql: SELECT * from people
hide:
- pet_id
- house_id
- id
subquery:
- key: brevage
bind: id
sql: |
SELECT name, calories, potassium FROM drink
LEFT JOIN people_has_drink ON drink.id = people_has_drink.id_drink
WHERE people_has_drink.id_people = ?
hash:
- name
- key: house
sql: SELECT color as paint, size, id from house WHERE id = ?
hide: id
bind: house_id
subquery:
- key: color
sql: SELECT short, ral, hex from color WHERE short LIKE ?
bind: paint
- key: pet
sql: SELECT name from pet WHERE id = ?
bind: pet_id
list: name
And this is what output I get:
---
- brevage:
- calories: 0
name: water
potassium: 3 mg
- calories: 45
name: orange juice
potassium: 200 mg
house:
- color:
- hex: '#F8F32B'
ral: RAL 1018
short: yellow
paint: yellow
size: small
nationality: Norvegian
pet:
- cats
smoke: Dunhill
- brevage:
- calories: 42
name: milk
potassium: 150 mg
house:
- color:
- hex: '#CB2821'
ral: RAL 2002
short: red
paint: red
size: big
nationality: Brit
pet:
- birds
- phasmatodea
smoke: Pall Mall
My test databse is a sqlite db where the tables are listed below:
Table People.----+-------------+----------+--------+-----------.
| id | nationality | house_id | pet_id | smoke |
+----+-------------+----------+--------+-----------+
| 1 | Norvegian | 4 | 3 | Dunhill |
| 2 | Brit | 1 | 2 | Pall Mall |
'----+-------------+----------+--------+-----------'
Table Drink
.----+--------------+----------+-----------.
| id | name | calories | potassium |
+----+--------------+----------+-----------+
| 1 | tea | 1 | 18 mg |
| 2 | coffee | 0 | 49 mg |
| 3 | milk | 42 | 150 mg |
| 4 | beer | 43 | 27 mg |
| 5 | water | 0 | 3 mg |
| 6 | orange juice | 45 | 200 mg |
'----+--------------+----------+-----------'
Table People Has Drink
.-----------+----------.
| id_people | id_drink |
+-----------+----------+
| 1 | 5 |
| 1 | 6 |
| 2 | 3 |
'-----------+----------'
Table House
+----+--------+--------+
| id | color | size |
+----+--------+--------+
| 1 | red | big |
| 2 | green | small |
| 3 | white | middle |
| 4 | yellow | small |
| 5 | blue | huge |
+----+--------+--------+
Table Color
.--------+-------------+----------+---------.
| short | color | ral | hex |
+--------+-------------+----------+---------+
| red | Vermilion | RAL 2002 | #CB2821 |
| green | Pale green | RAL 6021 | #89AC76 |
| white | Light grey | RAL 7035 | #D7D7D7 |
| yellow | Zinc yellow | RAL 1018 | #F8F32B |
| blue | Capri blue | RAL 5019 | #1B5583 |
'--------+-------------+----------+---------'
Table Pet
+----+-------------+
| id | name |
+----+-------------+
| 1 | dogs |
| 2 | birds |
| 3 | cats |
| 4 | horses |
| 5 | fishes |
| 2 | phasmatodea |
+----+-------------+
If you wish use the same data as mine also give you all what you need:
BEGIN TRANSACTION;
CREATE TABLE "pet" (
`id` INTEGER,
`name` TEXT
);
INSERT INTO `pet` VALUES (1,'dogs');
INSERT INTO `pet` VALUES (2,'birds');
INSERT INTO `pet` VALUES (3,'cats');
INSERT INTO `pet` VALUES (4,'horses');
INSERT INTO `pet` VALUES (5,'fishes');
INSERT INTO `pet` VALUES (2,'phasmatodea');
CREATE TABLE `people_has_drink` (
`id_people` INTEGER NOT NULL,
`id_drink` INTEGER NOT NULL,
PRIMARY KEY(id_people,id_drink)
);
INSERT INTO `people_has_drink` VALUES (1,5);
INSERT INTO `people_has_drink` VALUES (1,6);
INSERT INTO `people_has_drink` VALUES (2,3);
CREATE TABLE "people" (
`id` INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE,
`nationality` VARCHAR(45),
`house_id` INT,
`pet_id` INT,
`smoke` VARCHAR(45)
);
INSERT INTO `people` VALUES (1,'Norvegian',4,3,'Dunhill');
INSERT INTO `people` VALUES (2,'Brit',1,2,'Pall Mall');
CREATE TABLE "house" (
`id` INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE,
`color` TEXT,
`size` TEXT
);
INSERT INTO `house` VALUES (1,'red','big');
INSERT INTO `house` VALUES (2,'green','small');
INSERT INTO `house` VALUES (3,'white','middle');
INSERT INTO `house` VALUES (4,'yellow','small');
INSERT INTO `house` VALUES (5,'blue','huge');
CREATE TABLE `drink` (
`id` INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE,
`name` TEXT,
`calories` INTEGER,
`potassium` TEXT
);
INSERT INTO `drink` VALUES (1,'tea',1,'18 mg');
INSERT INTO `drink` VALUES (2,'coffee',0,'49 mg');
INSERT INTO `drink` VALUES (3,'milk',42,'150 mg');
INSERT INTO `drink` VALUES (4,'beer',43,'27 mg');
INSERT INTO `drink` VALUES (5,'water',0,'3 mg');
INSERT INTO `drink` VALUES (6,'orange juice',45,'200 mg');
CREATE TABLE `color` (
`short` TEXT UNIQUE,
`color` TEXT,
`ral` TEXT,
`hex` TEXT,
PRIMARY KEY(short)
);
INSERT INTO `color` VALUES ('red','Vermilion','RAL 2002','#CB2821');
INSERT INTO `color` VALUES ('green','Pale green','RAL 6021','#89AC76');
INSERT INTO `color` VALUES ('white','Light grey','RAL 7035','#D7D7D7');
INSERT INTO `color` VALUES ('yellow','Zinc yellow','RAL 1018','#F8F32B');
INSERT INTO `color` VALUES ('blue','Capri blue','RAL 5019','#1B5583');
COMMIT;
Is my implementation good
This is a rather broad question, and the answer probably depends on what you want from your code. For instance:
Does it work? Does it have all the features you need? Does it do what you want? Does it respond appropriately for all the ranges of inputs you want to cater for (and input you don't)? If you aren't sure, write some tests.
Is it fast enough? If not, what are the slow bits? Use Devel::NYTProf to find them.
If it's working, you probably also want to turn your code into a module rather than just a script so you can use it again.
and if not (I'm supposing that I am doing all wrong), what modules should I use to get the desired behavior?
It sounds very much like you're trying to do something like DBIx::Class (aka DBIC) does when you ask it to prefetch; it will build you a data structure of objects.
If you need to do this dynamically in response to arbitrary databases and YAML, that's not quite what DBIC was designed to do; it's probably possible but will probably involve you dynamically creating packages, which will not be easy.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With