Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Boost ASIO: Send message to all connected clients

I'm working on a project that involves a boost::beast websocket/http mixed server, which runs on top of boost::asio. I've heavily based my project off the advanced_server.cpp example source.

It works fine, but right now I'm attempting to add a feature that requires the sending of a message to all connected clients.

I'm not very familiar with boost::asio, but right now I can't see any way to have something like "broadcast" events (if that's even the correct term).

My naive approach would be to see if I can have the construction of websocket_session() attach something like an event listener, and the destructor detatch the listener. At that point, I could just fire the event, and have all the currently valid websocket sessions (to which the lifetime of websocket_session() is scoped) execute a callback.

There is https://stackoverflow.com/a/17029022/268006, which does more or less what I want by (ab)using a boost::asio::steady_timer, but that seems like a kind of horrible hack to accomplish something that should be pretty straightforward.

Basically, given a stateful boost::asio server, how can I do an operation on multiple connections?

like image 511
Fake Name Avatar asked Mar 20 '18 21:03

Fake Name


2 Answers

First off: You can broadcast UDP, but that's not to connected clients. That's just... UDP.

Secondly, that link shows how to have a condition-variable (event)-like interface in Asio. That's only a tiny part of your problem. You forgot about the big picture: you need to know about the set of open connections, one way or the other:

  1. e.g. keeping a container of session pointers (weak_ptr) to each connection
  2. each connection subscribing to a signal slot (e.g. Boost Signals).

Option 1. is great for performance, option 2. is better for flexibility (decoupling the event source from subscribers, making it possible to have heterogenous subscribers, e.g. not from connections).

Because I think Option 1. is much simpler w.r.t to threading, better w.r.t. efficiency (you can e.g. serve all clients from one buffer without copying) and you probably don't need to doubly decouple the signal/slots, let me refer to an answer where I already showed as much for pure Asio (without Beast):

  • How to design proper release of a boost::asio socket or wrapper thereof

It shows the concept of a "connection pool" - which is essentially a thread-safe container of weak_ptr<connection> objects with some garbage collection logic.

Demonstration: Introducing Echo Server

After chatting about things I wanted to take the time to actually demonstrate the two approaches, so it's completely clear what I'm talking about.

First let's present a simple, run-of-the mill asynchronous TCP server with

  • with multiple concurrent connections
  • each connected session reads from the client line-by-line, and echoes the same back to the client
  • stops accepting after 3 seconds, and exits after the last client disconnects

master branch on github

#include <boost/asio.hpp>
#include <memory>
#include <list>
#include <iostream>

namespace ba = boost::asio;
using ba::ip::tcp;
using boost::system::error_code;
using namespace std::chrono_literals;
using namespace std::string_literals;

static bool s_verbose = false;

struct connection : std::enable_shared_from_this<connection> {
    connection(ba::io_context& ioc) : _s(ioc) {}

    void start() { read_loop(); }
    void send(std::string msg, bool at_front = false) {
        post(_s.get_io_service(), [=] { // _s.get_executor() for newest Asio
            if (enqueue(std::move(msg), at_front))
                write_loop();
        });
    }

  private:
    void do_echo() {
        std::string line;
        if (getline(std::istream(&_rx), line)) {
            send(std::move(line) + '\n');
        }
    }

    bool enqueue(std::string msg, bool at_front)
    { // returns true if need to start write loop
        at_front &= !_tx.empty(); // no difference
        if (at_front)
            _tx.insert(std::next(begin(_tx)), std::move(msg));
        else
            _tx.push_back(std::move(msg));

        return (_tx.size() == 1);
    }
    bool dequeue()
    { // returns true if more messages pending after dequeue
        assert(!_tx.empty());
        _tx.pop_front();
        return !_tx.empty();
    }

    void write_loop() {
        ba::async_write(_s, ba::buffer(_tx.front()), [this,self=shared_from_this()](error_code ec, size_t n) {
                if (s_verbose) std::cout << "Tx: " << n << " bytes (" << ec.message() << ")" << std::endl;
                if (!ec && dequeue()) write_loop();
            });
    }

    void read_loop() {
        ba::async_read_until(_s, _rx, "\n", [this,self=shared_from_this()](error_code ec, size_t n) {
                if (s_verbose) std::cout << "Rx: " << n << " bytes (" << ec.message() << ")" << std::endl;
                do_echo();
                if (!ec)
                    read_loop();
            });
    }

    friend struct server;
    ba::streambuf          _rx;
    std::list<std::string> _tx;
    tcp::socket            _s;
};

struct server {
    server(ba::io_context& ioc) : _ioc(ioc) {
        _acc.bind({{}, 6767});
        _acc.set_option(tcp::acceptor::reuse_address());
        _acc.listen();
        accept_loop();
    }

    void stop() {
        _ioc.post([=] {
                _acc.cancel();
                _acc.close();
            });
    }

  private:
    void accept_loop() {
        auto session = std::make_shared<connection>(_acc.get_io_context());
        _acc.async_accept(session->_s, [this,session](error_code ec) {
             auto ep = ec? tcp::endpoint{} : session->_s.remote_endpoint();
             std::cout << "Accept from " << ep << " (" << ec.message() << ")" << std::endl;

             session->start();
             if (!ec)
                 accept_loop();
        });
    }

    ba::io_context& _ioc;
    tcp::acceptor _acc{_ioc, tcp::v4()};
};

int main(int argc, char** argv) {
    s_verbose = argc>1 && argv[1] == "-v"s;

    ba::io_context ioc;

    server s(ioc);

    std::thread th([&ioc] { ioc.run(); }); // todo exception handling

    std::this_thread::sleep_for(3s);
    s.stop(); // active connections will continue

    th.join();
}

Approach 1. Adding Broadcast Messages

So, let's add "broadcast messages" that get sent to all active connections simultaneously. We add two:

  • one at each new connection (saying "Player ## has entered the game")
  • one that emulates a global "server event", like you described in the question). It gets triggered from within main:

    std::this_thread::sleep_for(1s);
    
    auto n = s.broadcast("random global event broadcast\n");
    std::cout << "Global event broadcast reached " << n << " active connections\n";
    

Note how we do this by registering a weak pointer to each accepted connection and operating on each:

    _acc.async_accept(session->_s, [this,session](error_code ec) {
         auto ep = ec? tcp::endpoint{} : session->_s.remote_endpoint();
         std::cout << "Accept from " << ep << " (" << ec.message() << ")" << std::endl;

         if (!ec) {
             auto n = reg_connection(session);

             session->start();
             accept_loop();

             broadcast("player #" + std::to_string(n) + " has entered the game\n");
         }

    });

broadcast is also used directly from main and is simply:

size_t broadcast(std::string const& msg) {
    return for_each_active([msg](connection& c) { c.send(msg, true); });
}

using-asio-post branch on github

#include <boost/asio.hpp>
#include <memory>
#include <list>
#include <iostream>

namespace ba = boost::asio;
using ba::ip::tcp;
using boost::system::error_code;
using namespace std::chrono_literals;
using namespace std::string_literals;

static bool s_verbose = false;

struct connection : std::enable_shared_from_this<connection> {
    connection(ba::io_context& ioc) : _s(ioc) {}

    void start() { read_loop(); }
    void send(std::string msg, bool at_front = false) {
        post(_s.get_io_service(), [=] { // _s.get_executor() for newest Asio
            if (enqueue(std::move(msg), at_front))
                write_loop();
        });
    }

  private:
    void do_echo() {
        std::string line;
        if (getline(std::istream(&_rx), line)) {
            send(std::move(line) + '\n');
        }
    }

    bool enqueue(std::string msg, bool at_front)
    { // returns true if need to start write loop
        at_front &= !_tx.empty(); // no difference
        if (at_front)
            _tx.insert(std::next(begin(_tx)), std::move(msg));
        else
            _tx.push_back(std::move(msg));

        return (_tx.size() == 1);
    }
    bool dequeue()
    { // returns true if more messages pending after dequeue
        assert(!_tx.empty());
        _tx.pop_front();
        return !_tx.empty();
    }

    void write_loop() {
        ba::async_write(_s, ba::buffer(_tx.front()), [this,self=shared_from_this()](error_code ec, size_t n) {
                if (s_verbose) std::cout << "Tx: " << n << " bytes (" << ec.message() << ")" << std::endl;
                if (!ec && dequeue()) write_loop();
            });
    }

    void read_loop() {
        ba::async_read_until(_s, _rx, "\n", [this,self=shared_from_this()](error_code ec, size_t n) {
                if (s_verbose) std::cout << "Rx: " << n << " bytes (" << ec.message() << ")" << std::endl;
                do_echo();
                if (!ec)
                    read_loop();
            });
    }

    friend struct server;
    ba::streambuf          _rx;
    std::list<std::string> _tx;
    tcp::socket            _s;
};

struct server {
    server(ba::io_context& ioc) : _ioc(ioc) {
        _acc.bind({{}, 6767});
        _acc.set_option(tcp::acceptor::reuse_address());
        _acc.listen();
        accept_loop();
    }

    void stop() {
        _ioc.post([=] {
                _acc.cancel();
                _acc.close();
            });
    }

    size_t broadcast(std::string const& msg) {
        return for_each_active([msg](connection& c) { c.send(msg, true); });
    }

  private:
    using connptr = std::shared_ptr<connection>;
    using weakptr = std::weak_ptr<connection>;

    std::mutex _mx;
    std::vector<weakptr> _registered;

    size_t reg_connection(weakptr wp) {
        std::lock_guard<std::mutex> lk(_mx);
        _registered.push_back(wp);
        return _registered.size();
    }

    template <typename F>
    size_t for_each_active(F f) {
        std::vector<connptr> active;
        {
            std::lock_guard<std::mutex> lk(_mx);
            for (auto& w : _registered)
                if (auto c = w.lock())
                    active.push_back(c);
        }

        for (auto& c : active) {
            std::cout << "(running action for " << c->_s.remote_endpoint() << ")" << std::endl;
            f(*c);
        }

        return active.size();
    }

    void accept_loop() {
        auto session = std::make_shared<connection>(_acc.get_io_context());
        _acc.async_accept(session->_s, [this,session](error_code ec) {
             auto ep = ec? tcp::endpoint{} : session->_s.remote_endpoint();
             std::cout << "Accept from " << ep << " (" << ec.message() << ")" << std::endl;

             if (!ec) {
                 auto n = reg_connection(session);

                 session->start();
                 accept_loop();

                 broadcast("player #" + std::to_string(n) + " has entered the game\n");
             }

        });
    }

    ba::io_context& _ioc;
    tcp::acceptor _acc{_ioc, tcp::v4()};
};

int main(int argc, char** argv) {
    s_verbose = argc>1 && argv[1] == "-v"s;

    ba::io_context ioc;

    server s(ioc);

    std::thread th([&ioc] { ioc.run(); }); // todo exception handling

    std::this_thread::sleep_for(1s);

    auto n = s.broadcast("random global event broadcast\n");
    std::cout << "Global event broadcast reached " << n << " active connections\n";

    std::this_thread::sleep_for(2s);
    s.stop(); // active connections will continue

    th.join();
}

Approach 2: Those Broadcast But With Boost Signals2

The Signals approach is a fine example of Dependency Inversion.

Most salient notes:

  • signal slots get invoked on the thread invoking it ("raising the event")
  • the scoped_connection is there so subscriptions are *automatically removed when the connection is destructed
  • there's subtle difference in the wording of the console message from "reached # active connections" to "reached # active subscribers".

The difference is key to understanding the added flexibility: the signal owner/invoker does not know anything about the subscribers. That's the decoupling/dependency inversion we're talking about

using-signals2 branch on github

#include <boost/asio.hpp>
#include <memory>
#include <list>
#include <iostream>
#include <boost/signals2.hpp>

namespace ba = boost::asio;
using ba::ip::tcp;
using boost::system::error_code;
using namespace std::chrono_literals;
using namespace std::string_literals;

static bool s_verbose = false;

struct connection : std::enable_shared_from_this<connection> {
    connection(ba::io_context& ioc) : _s(ioc) {}

    void start() { read_loop(); }
    void send(std::string msg, bool at_front = false) {
        post(_s.get_io_service(), [=] { // _s.get_executor() for newest Asio
            if (enqueue(std::move(msg), at_front))
                write_loop();
        });
    }

  private:
    void do_echo() {
        std::string line;
        if (getline(std::istream(&_rx), line)) {
            send(std::move(line) + '\n');
        }
    }

    bool enqueue(std::string msg, bool at_front)
    { // returns true if need to start write loop
        at_front &= !_tx.empty(); // no difference
        if (at_front)
            _tx.insert(std::next(begin(_tx)), std::move(msg));
        else
            _tx.push_back(std::move(msg));

        return (_tx.size() == 1);
    }
    bool dequeue()
    { // returns true if more messages pending after dequeue
        assert(!_tx.empty());
        _tx.pop_front();
        return !_tx.empty();
    }

    void write_loop() {
        ba::async_write(_s, ba::buffer(_tx.front()), [this,self=shared_from_this()](error_code ec, size_t n) {
                if (s_verbose) std::cout << "Tx: " << n << " bytes (" << ec.message() << ")" << std::endl;
                if (!ec && dequeue()) write_loop();
            });
    }

    void read_loop() {
        ba::async_read_until(_s, _rx, "\n", [this,self=shared_from_this()](error_code ec, size_t n) {
                if (s_verbose) std::cout << "Rx: " << n << " bytes (" << ec.message() << ")" << std::endl;
                do_echo();
                if (!ec)
                    read_loop();
            });
    }

    friend struct server;
    ba::streambuf          _rx;
    std::list<std::string> _tx;
    tcp::socket            _s;

    boost::signals2::scoped_connection _subscription;
};

struct server {
    server(ba::io_context& ioc) : _ioc(ioc) {
        _acc.bind({{}, 6767});
        _acc.set_option(tcp::acceptor::reuse_address());
        _acc.listen();
        accept_loop();
    }

    void stop() {
        _ioc.post([=] {
                _acc.cancel();
                _acc.close();
            });
    }

    size_t broadcast(std::string const& msg) {
        _broadcast_event(msg);
        return _broadcast_event.num_slots();
    }

  private:
    boost::signals2::signal<void(std::string const& msg)> _broadcast_event;

    size_t reg_connection(connection& c) {
        c._subscription = _broadcast_event.connect(
                [&c](std::string msg){ c.send(msg, true); }
            );

        return _broadcast_event.num_slots();
    }

    void accept_loop() {
        auto session = std::make_shared<connection>(_acc.get_io_context());
        _acc.async_accept(session->_s, [this,session](error_code ec) {
             auto ep = ec? tcp::endpoint{} : session->_s.remote_endpoint();
             std::cout << "Accept from " << ep << " (" << ec.message() << ")" << std::endl;

             if (!ec) {
                 auto n = reg_connection(*session);

                 session->start();
                 accept_loop();

                 broadcast("player #" + std::to_string(n) + " has entered the game\n");
             }

        });
    }

    ba::io_context& _ioc;
    tcp::acceptor _acc{_ioc, tcp::v4()};
};

int main(int argc, char** argv) {
    s_verbose = argc>1 && argv[1] == "-v"s;

    ba::io_context ioc;

    server s(ioc);

    std::thread th([&ioc] { ioc.run(); }); // todo exception handling

    std::this_thread::sleep_for(1s);

    auto n = s.broadcast("random global event broadcast\n");
    std::cout << "Global event broadcast reached " << n << " active subscribers\n";

    std::this_thread::sleep_for(2s);
    s.stop(); // active connections will continue

    th.join();
}

See the diff between Approach 1. and 2.: Compare View on github

A sample of the output when run against 3 concurrent clients with:

(for a in {1..3}; do netcat localhost 6767 < /etc/dictionaries-common/words > echoed.$a& sleep .1; done; time wait)

enter image description here

like image 142
sehe Avatar answered Sep 22 '22 20:09

sehe


The answer from @sehe was amazing, so I'll be brief. Generally speaking, to implement an algorithm which operates on all active connections you must do the following:

  • Maintain a list of active connections. If this list is accessed by multiple threads, it will need synchronization (std::mutex). New connections should be inserted to the list, and when a connection is destroyed or becomes inactive it should be removed from the list.

  • To iterate the list, synchronization is required if the list is accessed by multiple threads (i.e. more than one thread calling asio::io_context::run, or if the list is also accessed from threads that are not calling asio::io_context::run)

  • During iteration, if the algorithm needs to inspect or modify the state of any connection, and that state can be changed by other threads, additional synchronization is needed. This includes any internal "queue" of messages that the connection object stores.

  • A simple way to synchronize a connection object is to use boost::asio::post to submit a function for execution on the connection object's context, which will be either an explicit strand (boost::asio::strand, as in the advanced server examples) or an implicit strand (what you get when only one thread calls io_context::run). The Approach 1 provided by @sehe uses post to synchronize in this fashion.

  • Another way to synchronize the connection object is to "stop the world." That means call io_context::stop, wait for all the threads to exit, and then you are guaranteed that no other threads are accessing the list of connections. Then you can read and write connection object state all you want. When you are finished with the list of connections, call io_context::restart and launch the threads which call io_context::run again. Stopping the io_context does not stop network activity, the kernel and network drivers still send and receive data from internal buffers. TCP/IP flow control will take care of things so the application still operates smoothly even though it becomes briefly unresponsive during the "stop the world." This approach can simplify things but depending on your particular application you will have to evaluate if it is right for you.

Hope this helps!

like image 37
Vinnie Falco Avatar answered Sep 22 '22 20:09

Vinnie Falco