Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Bokeh's equivalent to matplotlib subplots

I am looking for a way to create a plot the containing several subplots like

fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True)

would do in matplotlib, which then can be addressed by ax0 and ax1. Is there a way to do something similar in Bokeh? In the bokeh examples gallery I only found single plots.

like image 875
greole Avatar asked Oct 27 '14 21:10

greole


People also ask

Is bokeh better than Matplotlib?

Matplotlib can create any plot because it is so low-level, but Bokeh can be both used as a high-level or low-level interface; thus, it can create many sophisticated plots that Matplotlib creates but with fewer lines of code and a higher resolution.

What is subplot in Matplot?

Subplots mean groups of axes that can exist in a single matplotlib figure. subplots() function in the matplotlib library, helps in creating multiple layouts of subplots. It provides control over all the individual plots that are created.

What does Pyplot method subplots return?

pyplot. subplots method provides a way to plot multiple plots on a single figure. Given the number of rows and columns , it returns a tuple ( fig , ax ), giving a single figure fig with an array of axes ax .


1 Answers

I think the simpler example you can find is:

import numpy as np
import bokeh.plotting as bk_plotting
import bokeh.models as bk_models

# for the ipython notebook
bk_plotting.output_notebook()

# a random dataset
data = bk_models.ColumnDataSource(data=dict(x=np.arange(10),
                                            y1=np.random.randn(10),
                                            y2=np.random.randn(10)))

# defining the range (I tried with start and end instead of sources and couldn't make it work)
x_range = bk_models.DataRange1d(sources=[data.columns('x')])
y_range = bk_models.DataRange1d(sources=[data.columns('y1', 'y2')])

# create the first plot, and add a the line plot of the column y1
p1 = bk_models.Plot(x_range=x_range,
                    y_range=y_range,
                    title="",
                    min_border=2,
                    plot_width=250,
                    plot_height=250)
p1.add_glyph(data,
             bk_models.glyphs.Line(x='x',
                                   y='y1',
                                   line_color='black',
                                   line_width=2))

# add the axes
xaxis = bk_models.LinearAxis()
p1.add_layout(xaxis, 'below')
yaxis = bk_models.LinearAxis()
p1.add_layout(yaxis, 'left')

# add the grid
p1.add_layout(bk_models.Grid(dimension=1, ticker=xaxis.ticker))
p1.add_layout(bk_models.Grid(dimension=0, ticker=yaxis.ticker))

# add the tools
p1.add_tools(bk_models.PreviewSaveTool())

# create the second plot, and add a the line plot of the column y2
p2 = bk_models.Plot(x_range=x_range,
                    y_range=y_range,
                    title="",
                    min_border=2,
                    plot_width=250,
                    plot_height=250)
p2.add_glyph(data,
             bk_models.glyphs.Line(x='x',
                                   y='y2',
                                   line_color='black',
                                   line_width=2))



# add the x axis
xaxis = bk_models.LinearAxis()
p2.add_layout(xaxis, 'below')

# add the grid
p2.add_layout(bk_models.Grid(dimension=1, ticker=xaxis.ticker))
p2.add_layout(bk_models.Grid(dimension=0, ticker=yaxis.ticker))

# add the tools again (it's only displayed if added to each chart)
p2.add_tools(bk_models.PreviewSaveTool())

# display both
gp = bk_plotting.GridPlot(children=[[p1, p2]])
bk_plotting.show(gp)

Which generates the output:

enter image description here

like image 63
Marc Garcia Avatar answered Oct 05 '22 02:10

Marc Garcia