I am looking for a way to create a plot the containing several subplots like
fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True)
would do in matplotlib, which then can be addressed by ax0
and ax1
. Is there a way to do something similar in Bokeh? In the bokeh examples gallery I only found single plots.
Matplotlib can create any plot because it is so low-level, but Bokeh can be both used as a high-level or low-level interface; thus, it can create many sophisticated plots that Matplotlib creates but with fewer lines of code and a higher resolution.
Subplots mean groups of axes that can exist in a single matplotlib figure. subplots() function in the matplotlib library, helps in creating multiple layouts of subplots. It provides control over all the individual plots that are created.
pyplot. subplots method provides a way to plot multiple plots on a single figure. Given the number of rows and columns , it returns a tuple ( fig , ax ), giving a single figure fig with an array of axes ax .
I think the simpler example you can find is:
import numpy as np
import bokeh.plotting as bk_plotting
import bokeh.models as bk_models
# for the ipython notebook
bk_plotting.output_notebook()
# a random dataset
data = bk_models.ColumnDataSource(data=dict(x=np.arange(10),
y1=np.random.randn(10),
y2=np.random.randn(10)))
# defining the range (I tried with start and end instead of sources and couldn't make it work)
x_range = bk_models.DataRange1d(sources=[data.columns('x')])
y_range = bk_models.DataRange1d(sources=[data.columns('y1', 'y2')])
# create the first plot, and add a the line plot of the column y1
p1 = bk_models.Plot(x_range=x_range,
y_range=y_range,
title="",
min_border=2,
plot_width=250,
plot_height=250)
p1.add_glyph(data,
bk_models.glyphs.Line(x='x',
y='y1',
line_color='black',
line_width=2))
# add the axes
xaxis = bk_models.LinearAxis()
p1.add_layout(xaxis, 'below')
yaxis = bk_models.LinearAxis()
p1.add_layout(yaxis, 'left')
# add the grid
p1.add_layout(bk_models.Grid(dimension=1, ticker=xaxis.ticker))
p1.add_layout(bk_models.Grid(dimension=0, ticker=yaxis.ticker))
# add the tools
p1.add_tools(bk_models.PreviewSaveTool())
# create the second plot, and add a the line plot of the column y2
p2 = bk_models.Plot(x_range=x_range,
y_range=y_range,
title="",
min_border=2,
plot_width=250,
plot_height=250)
p2.add_glyph(data,
bk_models.glyphs.Line(x='x',
y='y2',
line_color='black',
line_width=2))
# add the x axis
xaxis = bk_models.LinearAxis()
p2.add_layout(xaxis, 'below')
# add the grid
p2.add_layout(bk_models.Grid(dimension=1, ticker=xaxis.ticker))
p2.add_layout(bk_models.Grid(dimension=0, ticker=yaxis.ticker))
# add the tools again (it's only displayed if added to each chart)
p2.add_tools(bk_models.PreviewSaveTool())
# display both
gp = bk_plotting.GridPlot(children=[[p1, p2]])
bk_plotting.show(gp)
Which generates the output:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With