Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Binning data in R

Tags:

r

binning

I have a vector with around 4000 values. I would just need to bin it into 60 equal intervals for which I would then have to calculate the median (for each of the bins).

v<-c(1:4000)

V is really just a vector. I read about cut but that needs me to specify the breakpoints. I just want 60 equal intervals

like image 678
user3419669 Avatar asked Jun 23 '14 06:06

user3419669


2 Answers

Use cut and tapply:

> tapply(v, cut(v, 60), median)
          (-3,67.7]          (67.7,134]           (134,201]           (201,268] 
               34.0               101.0               167.5               234.0 
          (268,334]           (334,401]           (401,468]           (468,534] 
              301.0               367.5               434.0               501.0 
          (534,601]           (601,668]           (668,734]           (734,801] 
              567.5               634.0               701.0               767.5 
          (801,867]           (867,934]         (934,1e+03]    (1e+03,1.07e+03] 
              834.0               901.0               967.5              1034.0 
(1.07e+03,1.13e+03]  (1.13e+03,1.2e+03]  (1.2e+03,1.27e+03] (1.27e+03,1.33e+03] 
             1101.0              1167.5              1234.0              1301.0 
 (1.33e+03,1.4e+03]  (1.4e+03,1.47e+03] (1.47e+03,1.53e+03]  (1.53e+03,1.6e+03] 
             1367.5              1434.0              1500.5              1567.0 
 (1.6e+03,1.67e+03] (1.67e+03,1.73e+03]  (1.73e+03,1.8e+03]  (1.8e+03,1.87e+03] 
             1634.0              1700.5              1767.0              1834.0 
(1.87e+03,1.93e+03]    (1.93e+03,2e+03]    (2e+03,2.07e+03] (2.07e+03,2.13e+03] 
             1900.5              1967.0              2034.0              2100.5 
 (2.13e+03,2.2e+03]  (2.2e+03,2.27e+03] (2.27e+03,2.33e+03]  (2.33e+03,2.4e+03] 
             2167.0              2234.0              2300.5              2367.0 
 (2.4e+03,2.47e+03] (2.47e+03,2.53e+03]  (2.53e+03,2.6e+03]  (2.6e+03,2.67e+03] 
             2434.0              2500.5              2567.0              2634.0 
(2.67e+03,2.73e+03]  (2.73e+03,2.8e+03]  (2.8e+03,2.87e+03] (2.87e+03,2.93e+03] 
             2700.5              2767.0              2833.5              2900.0 
   (2.93e+03,3e+03]    (3e+03,3.07e+03] (3.07e+03,3.13e+03]  (3.13e+03,3.2e+03] 
             2967.0              3033.5              3100.0              3167.0 
 (3.2e+03,3.27e+03] (3.27e+03,3.33e+03]  (3.33e+03,3.4e+03]  (3.4e+03,3.47e+03] 
             3233.5              3300.0              3367.0              3433.5 
(3.47e+03,3.53e+03]  (3.53e+03,3.6e+03]  (3.6e+03,3.67e+03] (3.67e+03,3.73e+03] 
             3500.0              3567.0              3633.5              3700.0 
 (3.73e+03,3.8e+03]  (3.8e+03,3.87e+03] (3.87e+03,3.93e+03]    (3.93e+03,4e+03] 
             3767.0              3833.5              3900.0              3967.0
like image 145
Thomas Avatar answered Sep 29 '22 10:09

Thomas


In the past, i've used this function

evenbins <- function(x, bin.count=10, order=T) {
    bin.size <- rep(length(x) %/% bin.count, bin.count)
    bin.size <- bin.size + ifelse(1:bin.count <= length(x) %% bin.count, 1, 0)
    bin <- rep(1:bin.count, bin.size)
    if(order) {    
        bin <- bin[rank(x,ties.method="random")]
    }
    return(factor(bin, levels=1:bin.count, ordered=order))
}

and then i can run it with

v.bin <- evenbins(v, 60)

and check the sizes with

table(v.bin)

and see they all contain 66 or 67 elements. By default this will order the values just like cut will so each of the factor levels will have increasing values. If you want to bin them based on their original order,

v.bin <- evenbins(v, 60, order=F)

instead. This just split the data up in the order it appears

like image 44
MrFlick Avatar answered Sep 29 '22 09:09

MrFlick