I have a graph of about 5000 nodes and 5000 links, that i can visualize in Chrome thanks to the vivagraph javascript library (webgl is faster than svg - in d3 for example).
My workflow is :
The problem is that it takes time to render the layout with well positionned nodes.
My approach is to pre-compute the nodes position in networkx for example. The really good point on this approach is that it minimize client work on the browser. But i can't achieve good positions on the webpage. I need help on this step.
The relevant python code for the node position computation is :
## positionning
try:
# Position nodes using Fruchterman-Reingold force-directed algorithm.
pos=nx.spring_layout(G)
for k,v in pos.iteritems():
# scaling tentative
# from small float like 0.5555 to higher values
# casting to int because precision is not important
pos[k] = [ int(i*1000) for i in v.tolist() ]
except Exception, e:
print "positionning failed"
raise
## setting positions
try:
# set position of nodes as a node attribute
# that will be used with the js library
nx.set_node_attributes(G,'pos', pos)
except Exception, e:
print "getting positions failed"
raise e
# output all the stuff
d = json_graph.node_link_data(G)
with open(args.output,'w') as f:
json.dump(d,f)
Then in my page, in javascript :
/*global Viva*/
function graph(file){
var file = file;
$.getJSON(file, function(data) {
var graphGenerator = Viva.Graph.generator();
graph = Viva.Graph.graph();
# building the graph with the json data :
data.nodes.forEach(function(n,i) {
var node = graph.addNode(n.id,{d: n.d});
# node position is defined in the json element attribute 'pos'
node.position = {
x : n.pos[0],
y : n.pos[1]
};
})
# adding links between nodes
data.links.forEach(function(l,i) {
graph.addLink(data.nodes[l.source].id, data.nodes[l.target].id);
})
var max_link = 55
var min_link = 1
var colors = d3.scale.linear().domain([min_link,max_link]).range(['#F0F0F0','#252525']);
var layout = Viva.Graph.Layout.forceDirected(graph, {
springLength : 80,
springCoeff : 0.0008,
dragCoeff : 0.001,
gravity : -5.0,
theta : 0.8
});
var graphics = Viva.Graph.View.webglGraphics();
graphics
.node(function(node){
# color and size of nodes
color = colors(node.links.length)
if(node.id == "root"){
// pin node on canvas, so no position update
node.isPinned = true;
size = 60;
} else {
size = 20+(7-node.id.length)*(7-node.id.length);
}
return Viva.Graph.View.webglSquare(size,color);
})
.link(function(link) {
# color on links
fromId = link.fromId;
toId = link.toId;
if(toId == "root" || fromId == "root"){
return Viva.Graph.View.webglLine("#252525");
} else {
if( fromId[0] == toId[0]){
linkcolor = linkcolors(fromId[0])
return Viva.Graph.View.webglLine(linkcolor);
} else {
linkcolor = averageRGB(linkcolors(fromId[0]),linkcolors(toId[0]))
return Viva.Graph.View.webglLine('#'+linkcolor);
}
}
});
renderer = Viva.Graph.View.renderer(graph,
{
layout : layout,
graphics : graphics,
enableBlending: false,
renderLinks : true,
prerender : true
});
renderer.run();
});
}
I am now trying Gephi, but i don't want to use the gephi toolkit as i am not used to java.
If somebody got some hints on this, please avoid me hundred of trials and maybe failure ;)
Spring Layout assumes that the edge weights uphold the metric property, i.e Weight(A,B)+Weight(A,C) > Weight(B,C). If this is not the case, then networkx tries to place them as realistic as possible.
You could try to adjust this by
pos=nx.spring_layout(G,k=\alpha, iterations=\beta)
# where 0.0<\alpha<1.0 and \beta>0
# k is the minimum distance between the nodes
# iterations specify the simulated annealing runs
# This code works only on Networkx 1.8 and not earlier versions
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With