I have the following code to read in a large file, say with over a million rows. I am using Parallel and Linq approaches. Is there a better way to do it? If yes, then how?
private static void ReadFile()
{
float floatTester = 0;
List<float[]> result = File.ReadLines(@"largedata.csv")
.Where(l => !string.IsNullOrWhiteSpace(l))
.Select(l => new { Line = l, Fields = l.Split(new[] { ',' }, StringSplitOptions.RemoveEmptyEntries) })
.Select(x => x.Fields
.Where(f => Single.TryParse(f, out floatTester))
.Select(f => floatTester).ToArray())
.ToList();
// now get your totals
int numberOfLinesWithData = result.Count;
int numberOfAllFloats = result.Sum(fa => fa.Length);
MessageBox.Show(numberOfAllFloats.ToString());
}
private static readonly char[] Separators = { ',', ' ' };
private static void ProcessFile()
{
var lines = File.ReadAllLines("largedata.csv");
var numbers = ProcessRawNumbers(lines);
var rowTotal = new List<double>();
var totalElements = 0;
foreach (var values in numbers)
{
var sumOfRow = values.Sum();
rowTotal.Add(sumOfRow);
totalElements += values.Count;
}
MessageBox.Show(totalElements.ToString());
}
private static List<List<double>> ProcessRawNumbers(IEnumerable<string> lines)
{
var numbers = new List<List<double>>();
/*System.Threading.Tasks.*/
Parallel.ForEach(lines, line =>
{
lock (numbers)
{
numbers.Add(ProcessLine(line));
}
});
return numbers;
}
private static List<double> ProcessLine(string line)
{
var list = new List<double>();
foreach (var s in line.Split(Separators, StringSplitOptions.RemoveEmptyEntries))
{
double i;
if (Double.TryParse(s, out i))
{
list.Add(i);
}
}
return list;
}
private void button1_Click(object sender, EventArgs e)
{
Stopwatch stopWatchParallel = new Stopwatch();
stopWatchParallel.Start();
ProcessFile();
stopWatchParallel.Stop();
// Get the elapsed time as a TimeSpan value.
TimeSpan ts = stopWatchParallel.Elapsed;
// Format and display the TimeSpan value.
string elapsedTime = String.Format("{0:00}:{1:00}:{2:00}.{3:00}",
ts.Hours, ts.Minutes, ts.Seconds,
ts.Milliseconds / 10);
MessageBox.Show(elapsedTime);
Stopwatch stopWatchLinQ = new Stopwatch();
stopWatchLinQ.Start();
ReadFile();
stopWatchLinQ.Stop();
// Get the elapsed time as a TimeSpan value.
TimeSpan ts2 = stopWatchLinQ.Elapsed;
// Format and display the TimeSpan value.
string elapsedTimeLinQ = String.Format("{0:00}:{1:00}:{2:00}.{3:00}",
ts2.Hours, ts.Minutes, ts.Seconds,
ts2.Milliseconds / 10);
MessageBox.Show(elapsedTimeLinQ);
}
Recently I faced the problem of parsing large CSV files as fast as possible for the same purpose: data aggregation and metrics calculation (in my case final goal was pivot table generation). I tested most popular CSV readers but found that they are just not designed for parsing CSV files with million of rows or more; JoshClose's CsvHelper is fast, but finally I was able to process CSV as a stream in 2x-4x times faster!
My approach is based on 2 assumptions:
foreach
) - as for
is much more efficient.Real life usage numbers (pivot table by 200MB CSV file, 17 columns, only 3 columns are used to build a crosstab):
--- update ---
I've published my library that works as described above on github: https://github.com/nreco/csv
Nuget package: https://www.nuget.org/packages/NReco.Csv/
You can the built-in OleDb for that..
public void ImportCsvFile(string filename)
{
FileInfo file = new FileInfo(filename);
using (OleDbConnection con =
new OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=\"" +
file.DirectoryName + "\";
Extended Properties='text;HDR=Yes;FMT=Delimited(,)';"))
{
using (OleDbCommand cmd = new OleDbCommand(string.Format
("SELECT * FROM [{0}]", file.Name), con))
{
con.Open();
// Using a DataTable to process the data
using (OleDbDataAdapter adp = new OleDbDataAdapter(cmd))
{
DataTable tbl = new DataTable("MyTable");
adp.Fill(tbl);
//foreach (DataRow row in tbl.Rows)
//Or directly make a list
List<DataRow> list = dt.AsEnumerable().ToList();
}
}
}
}
See this and this for further reference.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With