In order to save space for a very particular use-case in Oracle SQL, I'm experimenting with using a bitmap methodology for representing Boolean state over time (an event did or did not happen on that day), with each bit in a binary number representing yes/no for that day. That way, for example, a 32 bit number would allow me to represent 32 consecutive days of whether something happened each day. I would simply need to count the number of bits that are set (=1) to get the count of days in that 32-day period that the event occurred, without having store a separate dated row for each day.
Here's an example of me testing updating the value each day (rolling off the oldest bit and setting the newest one):
SELECT testbitmap original_bitmap,
BITAND((testbitmap * POWER(2,/*rolloff the nbr of days since last event*/1)) + /*the event happened today*/1,POWER(2,32)-1) new_bitmap
FROM (SELECT BIN_TO_NUM(1,1,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0) testbitmap
FROM dual)
So far so good. But now I need to query the result, and that means counting the set bits of my resulting bitmap. There isn't an inverse of BIN_TO_NUM that I know of in Oracle. Without using a function that loops through each bit and tests it individually, is there a way to count set bits in Oracle (e.g. the number 9 should result in 2 (1001), whereas the number 7 would result in 3 (0111)? Maybe a mathematical formula the returns the number of 1s required to represent a number in binary?
You can use the Hamming Weight algorithm, in C++ it would be:
int numberOfSetBits(uint32_t i) { // Java: use int, and use >>> instead of >>. Or use Integer.bitCount() // C or C++: use uint32_t i = i - ((i >> 1) & 0x55555555); // add pairs of bits i = (i & 0x33333333) + ((i >> 2) & 0x33333333); // quads i = (i + (i >> 4)) & 0x0F0F0F0F; // groups of 8 return (i * 0x01010101) >> 24; // horizontal sum of bytes }
In Oracle, you can use the function:
CREATE FUNCTION number_of_set_bits32(
i NUMBER
) RETURN NUMBER DETERMINISTIC
IS
v NUMBER := i;
c_max CONSTANT NUMBER := POWER(2, 32);
BEGIN
v := v - BITAND(TRUNC(v/2), TO_NUMBER('55555555', 'XXXXXXXX'));
v := MOD(
BITAND(v, TO_NUMBER('33333333', 'XXXXXXXX'))
+ BITAND(TRUNC(v/4), TO_NUMBER('33333333', 'XXXXXXXX')),
c_max
);
v := BITAND(v + FLOOR(v/16), TO_NUMBER('0F0F0F0F', 'XXXXXXXX'));
RETURN TRUNC(MOD(v * TO_NUMBER('01010101', 'XXXXXXXX'), c_max) / POWER(2, 24));
END;
/
Then to count your value would be:
SELECT testbitmap AS original_bitmap,
NUMBER_OF_SET_BITS32(testbitmap)
FROM (
SELECT BIN_TO_NUM(1,1,0,0,1,1,0,0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0)
AS testbitmap
FROM DUAL
)
Which outputs:
| ORIGINAL_BITMAP | NUMBER_OF_SET_BITS32(TESTBITMAP) |
|---|---|
| 3429605376 | 11 |
You should also be able to create an Oracle function using Java:
CREATE OR REPLACE FUNCTION number_of_set_bits(i NUMBER) RETURN NUMBER DETERMINISTIC
AS LANGUAGE JAVA NAME 'java.lang.Long.bitCount( long ) return long';
/
Which, for the same SELECT query, gives the same output.
If you want a 64-bit (or 128) function then double (quadruple) the width of all the hex-strings and change the final divide from 224 to 256 (2120), to get the top 8-bits, as mentioned in the answer linked at the top of this answer:
CREATE FUNCTION number_of_set_bits64(
i NUMBER
) RETURN NUMBER DETERMINISTIC
IS
v NUMBER := i;
c_max CONSTANT NUMBER := POWER(2, 64);
BEGIN
v := v - BITAND(TRUNC(v/2), TO_NUMBER('5555555555555555', 'XXXXXXXXXXXXXXXX'));
v := MOD(
BITAND(v, TO_NUMBER('3333333333333333', 'XXXXXXXXXXXXXXXX'))
+ BITAND(TRUNC(v/4), TO_NUMBER('3333333333333333', 'XXXXXXXXXXXXXXXX')),
c_max
);
v := BITAND(v + FLOOR(v/16), TO_NUMBER('0F0F0F0F0F0F0F0F', 'XXXXXXXXXXXXXXXX'));
RETURN TRUNC(
MOD(v * TO_NUMBER('0101010101010101', 'XXXXXXXXXXXXXXXX'), c_max)
/ POWER(2, 56)
);
END;
/
CREATE FUNCTION number_of_set_bits128(
i NUMBER
) RETURN NUMBER DETERMINISTIC
IS
v NUMBER := i;
c_max CONSTANT NUMBER := POWER(2, 128);
BEGIN
v := v - BITAND(TRUNC(v/2), TO_NUMBER('55555555555555555555555555555555', 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'));
v := MOD(
BITAND(v, TO_NUMBER('33333333333333333333333333333333', 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'))
+ BITAND(TRUNC(v/4), TO_NUMBER('33333333333333333333333333333333', 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX')),
c_max
);
v := BITAND(v + FLOOR(v/16), TO_NUMBER('0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F', 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'));
RETURN TRUNC(
MOD(v * TO_NUMBER('01010101010101010101010101010101', 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'), c_max)
/ POWER(2, 120)
);
END;
/
Or, in Java, for larger numbers you can use java.math.BigInteger.bitCount():
CREATE AND COMPILE JAVA SOURCE NAMED bitutils AS
import java.math.BigDecimal;
public class BitUtils {
public static Integer bitCount(
final BigDecimal value
)
{
return value == null ? null : value.toBigInteger().bitCount();
}
};
/
CREATE OR REPLACE FUNCTION number_of_set_bits_java(i NUMBER) RETURN NUMBER DETERMINISTIC
AS LANGUAGE JAVA NAME 'BitUtils.bitCount( java.math.BigDecimal ) return java.lang.Integer';
/
fiddle
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With