I'm running some analysis where I'm getting quite a few datasets that are between 2-3G's. Right now, I'm saving this as .RData
file types. Then, later I'm loading these files to continue working, which is taking some time to load in. My question is: would saving then load these files as .csv's be faster. Is data.table
the fastest package for reading in .csv files? I guess I'm looking for the optimum workflow in R.
Based on the comments and some of my own research, I put together a benchmark.
library(bench)
nr_of_rows <- 1e7
set.seed(1)
df <- data.frame(
Logical = sample(c(TRUE, FALSE, NA), prob = c(0.85, 0.1, 0.05), nr_of_rows, replace = TRUE),
Integer = sample(1L:100L, nr_of_rows, replace = TRUE),
Real = sample(sample(1:10000, 20) / 100, nr_of_rows, replace = TRUE),
Factor = as.factor(sample(labels(UScitiesD), nr_of_rows, replace = TRUE))
)
baseRDS <- function() {
saveRDS(df, "dataset.Rds")
readRDS("dataset.Rds")
}
baseRDS_nocompress <- function() {
saveRDS(df, "dataset.Rds", compress = FALSE)
readRDS("dataset.Rds")
}
baseRData <- function() {
save(list = "df", file = "dataset.Rdata")
load("dataset.Rdata")
df
}
data.table <- function() {
data.table::fwrite(df, "dataset.csv")
data.table::fread("dataset.csv")
}
feather <- function(variables) {
feather::write_feather(df, "dataset.feather")
as.data.frame(feather::read_feather("dataset.feather"))
}
fst <- function() {
fst::write.fst(df, "dataset.fst")
fst::read.fst("dataset.fst")
}
fst <- function() {
fst::write.fst(df, "dataset.fst")
fst::read.fst("dataset.fst")
}
# only works on Unix systems
# fastSave <- function() {
# fastSave::save.pigz(df, file = "dataset.RData", n.cores = 4)
# fastSave::load.pigz("dataset.RData")
# }
results <- mark(
baseRDS(),
baseRDS_nocompress(),
baseRData(),
data.table(),
feather(),
fst(),
check = FALSE
)
summary(results)
# A tibble: 6 x 13
expression min median `itr/sec` mem_alloc
<bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt>
1 baseRDS() 15.74s 15.74s 0.0635 191MB
2 baseRDS_nocompress() 720.82ms 720.82ms 1.39 191MB
3 baseRData() 18.14s 18.14s 0.0551 191MB
4 data.table() 4.43s 4.43s 0.226 297MB
5 feather() 794.13ms 794.13ms 1.26 191MB
6 fst() 233.96ms 304.28ms 3.29 229MB
# ... with 8 more variables: `gc/sec` <dbl>, n_itr <int>,
# n_gc <dbl>, total_time <bch:tm>, result <list>,
# memory <list>, time <list>, gc <list>
> summary(results, relative = TRUE)
# A tibble: 6 x 13
expression min median `itr/sec` mem_alloc
<bch:expr> <dbl> <dbl> <dbl> <dbl>
1 baseRDS() 67.3 51.7 1.15 1.00
2 baseRDS_nocompress() 3.08 2.37 25.2 1.00
3 baseRData() 77.5 59.6 1 1.00
4 data.table() 18.9 14.5 4.10 1.56
5 feather() 3.39 2.61 22.8 1
6 fst() 1 1 59.6 1.20
# ... with 8 more variables: `gc/sec` <dbl>, n_itr <int>,
# n_gc <dbl>, total_time <bch:tm>, result <list>,
# memory <list>, time <list>, gc <list>
Based on this, the fst
package is the fastest. It's followed by base R on the second place with the option compress = FALSE
. This produces large files though. I wouldn't recommend saving anything in csv except you want to open it with a different program. In that case data.table
would be your choice. Otherwise I would either recommend saveRDS
or fst
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With