Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Best file type for loading data in to R (speed wise)?

I'm running some analysis where I'm getting quite a few datasets that are between 2-3G's. Right now, I'm saving this as .RData file types. Then, later I'm loading these files to continue working, which is taking some time to load in. My question is: would saving then load these files as .csv's be faster. Is data.table the fastest package for reading in .csv files? I guess I'm looking for the optimum workflow in R.

like image 423
elliot Avatar asked Dec 10 '22 01:12

elliot


1 Answers

Based on the comments and some of my own research, I put together a benchmark.

library(bench)

nr_of_rows <- 1e7
set.seed(1)
df <- data.frame(
  Logical = sample(c(TRUE, FALSE, NA), prob = c(0.85, 0.1, 0.05), nr_of_rows, replace = TRUE),
  Integer = sample(1L:100L, nr_of_rows, replace = TRUE),
  Real = sample(sample(1:10000, 20) / 100, nr_of_rows, replace = TRUE),
  Factor = as.factor(sample(labels(UScitiesD), nr_of_rows, replace = TRUE))
)

baseRDS <- function() {
  saveRDS(df, "dataset.Rds")
  readRDS("dataset.Rds")
}

baseRDS_nocompress <- function() {
  saveRDS(df, "dataset.Rds", compress = FALSE)
  readRDS("dataset.Rds")
}

baseRData <- function() {
  save(list = "df", file = "dataset.Rdata")
  load("dataset.Rdata")
  df
}

data.table <- function() {
  data.table::fwrite(df, "dataset.csv")
  data.table::fread("dataset.csv")
}

feather <- function(variables) {
  feather::write_feather(df, "dataset.feather")
  as.data.frame(feather::read_feather("dataset.feather"))
}

fst <- function() {
  fst::write.fst(df, "dataset.fst")
  fst::read.fst("dataset.fst")
}

fst <- function() {
  fst::write.fst(df, "dataset.fst")
  fst::read.fst("dataset.fst")
}

# only works on Unix systems
# fastSave <- function() {
#   fastSave::save.pigz(df, file = "dataset.RData", n.cores = 4)
#   fastSave::load.pigz("dataset.RData")
# }

results <- mark(
  baseRDS(),
  baseRDS_nocompress(),
  baseRData(),
  data.table(),
  feather(),
  fst(),
  check = FALSE
)

Results

summary(results)
# A tibble: 6 x 13
  expression                min   median `itr/sec` mem_alloc
  <bch:expr>           <bch:tm> <bch:tm>     <dbl> <bch:byt>
1 baseRDS()              15.74s   15.74s    0.0635     191MB
2 baseRDS_nocompress() 720.82ms 720.82ms    1.39       191MB
3 baseRData()            18.14s   18.14s    0.0551     191MB
4 data.table()            4.43s    4.43s    0.226      297MB
5 feather()            794.13ms 794.13ms    1.26       191MB
6 fst()                233.96ms 304.28ms    3.29       229MB
# ... with 8 more variables: `gc/sec` <dbl>, n_itr <int>,
#   n_gc <dbl>, total_time <bch:tm>, result <list>,
#   memory <list>, time <list>, gc <list>

> summary(results,  relative = TRUE)
# A tibble: 6 x 13
  expression             min median `itr/sec` mem_alloc
  <bch:expr>           <dbl>  <dbl>     <dbl>     <dbl>
1 baseRDS()            67.3   51.7       1.15      1.00
2 baseRDS_nocompress()  3.08   2.37     25.2       1.00
3 baseRData()          77.5   59.6       1         1.00
4 data.table()         18.9   14.5       4.10      1.56
5 feather()             3.39   2.61     22.8       1   
6 fst()                 1      1        59.6       1.20
# ... with 8 more variables: `gc/sec` <dbl>, n_itr <int>,
#   n_gc <dbl>, total_time <bch:tm>, result <list>,
#   memory <list>, time <list>, gc <list>

Based on this, the fst package is the fastest. It's followed by base R on the second place with the option compress = FALSE. This produces large files though. I wouldn't recommend saving anything in csv except you want to open it with a different program. In that case data.table would be your choice. Otherwise I would either recommend saveRDS or fst.

like image 112
JBGruber Avatar answered Jan 04 '23 05:01

JBGruber