This code  combine image and mask  for image detection?
How can i correct that error?
batch_size = x.shape[0] AttributeError: 'tuple' object has no attribute 'shape'
This is the code used for training:
train_datagen = ImageDataGenerator(
            rescale=1. / 255,
            shear_range=0.2,
            zoom_range=0.2,
            horizontal_flip=True)
train_datagen_1 = ImageDataGenerator(
            rescale=1. / 255,
            shear_range=0.2,
            zoom_range=0.2,
            horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
            train_data_dir,
            target_size=(200, 150),
            batch_size=1
          )
train_generator_1= train_datagen_1.flow_from_directory(
            train_data_dir_1,
            target_size=(200, 150),
            batch_size=1)
train_generator_2 = zip( train_generator, train_generator_1)
model.fit_generator(
            train_generator_2,
            steps_per_epoch=nb_train_samples // batch_size,
            epochs=50)
This is the model I'm using:
model = Sequential() 
model.add(Conv2D(32, (3, 3), input_shape=(200, 150, 3))) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Flatten()) 
model.add(Dense(20)) model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(90000)) 
model.add(Activation('sigmoid')) 
model.compile(loss='mse', optimizer='rmsprop', metrics=['accuracy'])
                The selected answer is inaccurate. The reason why the code is failing is not because the tuples are of the ((input1,output1), (input2,output2)), ...), but because they are of the type (((input1, class1), (input2, class2), ...), ((output1, class1), (output2, class2), ...)).
You could have fixed your problem by simply adding class_mode=None to your flow_from_directory calls.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With