I am trying to implement a very basic neural network in TensorFlow but I am having some problems. It is a very basic network that takes as input to values (hours or sleep and hours of study) and predicts the score on a test (I found this example on you-tube). So basically I have only one hidden layer with three units, each one computes an activation function (sigmoid) and the cost function is sum of square errors and I am using Gradient descent to minimize it. So the problem is, when I train the net with the training data and try to make some predictions using the same training data, the results do not quite match and they also appear strange because the look equal each other.
import tensorflow as tf
import numpy as np
import input_data
sess = tf.InteractiveSession()
# create a 2-D version of input for plotting
trX = np.matrix(([3,5], [5,1],[10,2]), dtype=float)
trY = np.matrix(([85], [82], [93]), dtype=float) # 3X1 matrix
trX = trX / np.max(trX, axis=0)
trY = trY / 100 # 100 is the maximum score allowed
teX = np.matrix(([3,5]), dtype=float)
teY = np.matrix(([85]), dtype=float)
teX = teX/np.amax(teX, axis=0)
teY = teY/100
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
def model(X, w_h, w_o):
z2 = tf.matmul(X, w_h)
a2 = tf.nn.sigmoid(z2) # this is a basic mlp, think 2 stacked logistic regressions
z3 = tf.matmul(a2, w_o)
yHat = tf.nn.sigmoid(z3)
return yHat # note that we dont take the softmax at the end because our cost fn does that for us
X = tf.placeholder("float", [None, 2])
Y = tf.placeholder("float", [None, 1])
W1 = init_weights([2, 3]) # create symbolic variables
W2 = init_weights([3, 1])
sess.run(tf.initialize_all_variables())
py_x = model(X, W1, W2)
cost = tf.reduce_mean(tf.square(py_x - Y))
train_op = tf.train.GradientDescentOptimizer(0.5).minimize(cost) # construct an optimizer
predict_op = py_x
sess.run(train_op, feed_dict={X: trX, Y: trY})
print sess.run(predict_op, feed_dict={X: trX})
sess.close()
It yields:
[[ 0.51873487] [ 0.51874501] [ 0.51873082]]
and I believe it should be similar to the training data results.
I am quite new to neural nets and machine learning so pardon me for any mistakes, thanks in advance.
TensorFlow, which competes with frameworks such as PyTorch and Apache MXNet, can train and run deep neural networks for handwritten digit classification, image recognition, word embeddings, recurrent neural networks, sequence-to-sequence models for machine translation, natural language processing, and PDE (partial ...
A neural network is a series of algorithms that endeavors to recognize underlying relationships in a set of data through a process that mimics the way the human brain operates. In this sense, neural networks refer to systems of neurons, either organic or artificial in nature.
The main reason that your network isn't training is that the statement:
sess.run(train_op, feed_dict={X: trX, Y: trY})
…only executes once. In TensorFlow, running train_op
(or whatever operation is returned from Optimizer.minimize()
will only cause the network to take a single gradient descent step. You should execute it in a loop to perform iterative training, and the weights will eventually converge.
Two other tips: (i) you might achieve faster convergence if you feed a subset of your training data in each step, rather than the entire dataset; and (ii) the learning rate of 0.5 is probably too high (although this depends on the data).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With