Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Basic Dual Contouring Theory

I've been searching on google, but cannot find anything basic. In it's most basic form, how is dual contouring (for a voxel terrain) implememted? I know what it does, and why, but cannot understand how to do it. JS or C# (preferably) is good.Has anyone used Dual contouring before and can explain it briefly?

like image 244
Muzz5 Avatar asked Jun 26 '11 18:06

Muzz5


1 Answers

Ok. So I got bored tonight and decided to give implementing dual contouring myself a shot. Like I said in the comments, all the relevant material is in section 2 of the following paper:

  • Original Version: http://www.frankpetterson.com/publications/dualcontour/dualcontour.pdf
  • Archived Version: https://web.archive.org/web/20170713094715if_/http://www.frankpetterson.com/publications/dualcontour/dualcontour.pdf

In particular, the topology of the mesh is described in part 2.2 in the following section, quote:

  1. For each cube that exhibits a sign change, generate a vertex positioned at the minimizer of the quadratic function of equation 1.

  2. For each edge that exhibits a sign change, generate a quad connecting the minimizing vertices of the four cubes containing the edge.

That's all there is to it! You solve a linear least squares problem to get a vertex for each cube, then you connect adjacent vertices with quads. So using this basic idea, I wrote a dual contouring isosurface extractor in python using numpy (partly just to satisfy my own morbid curiosity on how it worked). Here is the code:

import numpy as np
import numpy.linalg as la
import scipy.optimize as opt
import itertools as it

#Cardinal directions
dirs = [ [1,0,0], [0,1,0], [0,0,1] ]

#Vertices of cube
cube_verts = [ np.array([x, y, z])
    for x in range(2)
    for y in range(2)
    for z in range(2) ]

#Edges of cube
cube_edges = [ 
    [ k for (k,v) in enumerate(cube_verts) if v[i] == a and v[j] == b ]
    for a in range(2)
    for b in range(2)
    for i in range(3) 
    for j in range(3) if i != j ]

#Use non-linear root finding to compute intersection point
def estimate_hermite(f, df, v0, v1):
    t0 = opt.brentq(lambda t : f((1.-t)*v0 + t*v1), 0, 1)
    x0 = (1.-t0)*v0 + t0*v1
    return (x0, df(x0))

#Input:
# f = implicit function
# df = gradient of f
# nc = resolution
def dual_contour(f, df, nc):

    #Compute vertices
    dc_verts = []
    vindex   = {}
    for x,y,z in it.product(range(nc), range(nc), range(nc)):
        o = np.array([x,y,z])

        #Get signs for cube
        cube_signs = [ f(o+v)>0 for v in cube_verts ]

        if all(cube_signs) or not any(cube_signs):
            continue

        #Estimate hermite data
        h_data = [ estimate_hermite(f, df, o+cube_verts[e[0]], o+cube_verts[e[1]]) 
            for e in cube_edges if cube_signs[e[0]] != cube_signs[e[1]] ]

        #Solve qef to get vertex
        A = [ n for p,n in h_data ]
        b = [ np.dot(p,n) for p,n in h_data ]
        v, residue, rank, s = la.lstsq(A, b)

        #Throw out failed solutions
        if la.norm(v-o) > 2:
            continue

        #Emit one vertex per every cube that crosses
        vindex[ tuple(o) ] = len(dc_verts)
        dc_verts.append(v)

    #Construct faces
    dc_faces = []
    for x,y,z in it.product(range(nc), range(nc), range(nc)):
        if not (x,y,z) in vindex:
            continue

        #Emit one face per each edge that crosses
        o = np.array([x,y,z])   
        for i in range(3):
            for j in range(i):
                if tuple(o + dirs[i]) in vindex and tuple(o + dirs[j]) in vindex and tuple(o + dirs[i] + dirs[j]) in vindex:
                    dc_faces.append( [vindex[tuple(o)], vindex[tuple(o+dirs[i])], vindex[tuple(o+dirs[j])]] )
                    dc_faces.append( [vindex[tuple(o+dirs[i]+dirs[j])], vindex[tuple(o+dirs[j])], vindex[tuple(o+dirs[i])]] )

    return dc_verts, dc_faces

It is not very fast because it uses the SciPy's generic non-linear root finding methods to find the edge points on the isosurface. However, it does seem to work reasonably well and in a fairly generic way. To test it, I ran it using the following test case (in the Mayavi2 visualization toolkit):

import enthought.mayavi.mlab as mlab

center = np.array([16,16,16])
radius = 10

def test_f(x):
    d = x-center
    return np.dot(d,d) - radius**2

def test_df(x):
    d = x-center
    return d / sqrt(np.dot(d,d))

verts, tris = dual_contour(f, df, n)

mlab.triangular_mesh( 
            [ v[0] for v in verts ],
            [ v[1] for v in verts ],
            [ v[2] for v in verts ],
            tris)

This defines a sphere as an implicit equation, and solves for the 0-isosurface by dual contouring. When I ran it in the toolkit, this was the result:

enter image description here

In conclusion, it appears to be working.

like image 183
Mikola Avatar answered Dec 05 '22 00:12

Mikola