I have an application in which there are Courses, Topics, and Tags. Each Topic can be in many Courses and have many Tags. I want to look up every Topic that has a specific Tag x and is in specific Course y.
Naively, I give each standard a list of Course ids and Tag ids, so I can select * from Topic where tagIds = x && courseIds = y. I think this query would require an exploding index: with 30 courses and 30 tags we're looking at ~900 index entries, right? At 50 x 20 I'm well over the 5000-entry limit.
I could just select * from Topic where tagIds = x, and then use a for loop to go through the result, choosing only Topics whose courseIds.contain(y). This returns way more results than I'm interested in and spends a lot of time deserializing those results, but the index stays small.
I could select __KEY__ from Topic where tagIds = x AND select __KEY__ from Topic where courseIds = y and find the intersection in my application code. If the sets are small this might not be unreasonable.
I could make a sort of join table, TopicTagLookup with a tagId and courseId field. The parent key of these entities would point to the relevant Topic. Then I would need to make one of these TopicTagLookup entities for every combination of courseId x tagId x relevant topic id. This is effectively like creating my own index. It would still explode, but there would be no 5000-entry limit. Now, however, I need to write 5000 entities to the same entity group, which would run up against the entity-group write-rate limit!
I could precalculate each query. A TopicTagQueryCache entity would hold a tagId, courseId, and a List<TopicId>. Then the query looks like select * from TopicTagQueryCache where tagId=x && courseId = y, fetching the list of topic ids, and then using a getAllById call on the list. Similar to #3, but I only have one entity per courseId x tagId. There's no need for entity groups, but now I have this potentially huge list to maintain transactionally.
Appengine seems great for queries you can precalculate. I just don't quite see a way to precalculate this query efficiently. The question basically boils down to:
What's the best way to organize data so that we can do set operations like finding the Topics in the intersection of a Course and a Tag?
Your assessment of your options is correct. If you don't need any sort criteria, though, option 3 is more or less already done for you by the App Engine datastore, with the merge join strategy. Simply do a query as you detail in option 1, without any sorts or inequality filters, and App Engine will do a merge join internally in the datastore, and return only the relevant results.
Options 4 and 5 are similar to the relation index pattern documented in this talk.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With