I have 30 csv data files from 30 replicate runs of an experiment I ran. I am using pandas' read_csv()
function to read the data into a list of DataFrames. I would like to create a single DataFrame out of this list, containing the average of the 30 DataFrames for each column. Is there a built-in way to accomplish this?
To clarify, I'll expand on the example in the answers below. Say I have two DataFrames:
>>> x
A B C
0 -0.264438 -1.026059 -0.619500
1 0.927272 0.302904 -0.032399
2 -0.264273 -0.386314 -0.217601
3 -0.871858 -0.348382 1.100491
>>> y
A B C
0 1.923135 0.135355 -0.285491
1 -0.208940 0.642432 -0.764902
2 1.477419 -1.659804 -0.431375
3 -1.191664 0.152576 0.935773
What is the merging function I should use to make a 3D array of sorts with the DataFrame? e.g.,
>>> automagic_merge(x, y)
A B C
0 [-0.264438, 1.923135] [-1.026059, 0.135355] [-0.619500, -0.285491]
1 [ 0.927272, -0.208940] [ 0.302904, 0.642432] [-0.032399, -0.764902]
2 [-0.264273, 1.477419] [-0.386314, -1.659804] [-0.217601, -0.431375]
3 [-0.871858, -1.191664] [-0.348382, 0.152576] [ 1.100491, 0.935773]
so I can calculate average, s.e.m., etc. on those lists instead of the entire column.
Check it out:
In [14]: glued = pd.concat([x, y], axis=1, keys=['x', 'y'])
In [15]: glued
Out[15]:
x y
A B C A B C
0 -0.264438 -1.026059 -0.619500 1.923135 0.135355 -0.285491
1 0.927272 0.302904 -0.032399 -0.208940 0.642432 -0.764902
2 -0.264273 -0.386314 -0.217601 1.477419 -1.659804 -0.431375
3 -0.871858 -0.348382 1.100491 -1.191664 0.152576 0.935773
In [16]: glued.swaplevel(0, 1, axis=1).sortlevel(axis=1)
Out[16]:
A B C
x y x y x y
0 -0.264438 1.923135 -1.026059 0.135355 -0.619500 -0.285491
1 0.927272 -0.208940 0.302904 0.642432 -0.032399 -0.764902
2 -0.264273 1.477419 -0.386314 -1.659804 -0.217601 -0.431375
3 -0.871858 -1.191664 -0.348382 0.152576 1.100491 0.935773
In [17]: glued = glued.swaplevel(0, 1, axis=1).sortlevel(axis=1)
In [18]: glued
Out[18]:
A B C
x y x y x y
0 -0.264438 1.923135 -1.026059 0.135355 -0.619500 -0.285491
1 0.927272 -0.208940 0.302904 0.642432 -0.032399 -0.764902
2 -0.264273 1.477419 -0.386314 -1.659804 -0.217601 -0.431375
3 -0.871858 -1.191664 -0.348382 0.152576 1.100491 0.935773
For the record, swapping the level and reordering was not necessary, just for visual purposes.
Then you can do stuff like:
In [19]: glued.groupby(level=0, axis=1).mean()
Out[19]:
A B C
0 0.829349 -0.445352 -0.452496
1 0.359166 0.472668 -0.398650
2 0.606573 -1.023059 -0.324488
3 -1.031761 -0.097903 1.018132
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With