Problem Description: I want to be able to pass around a list of methods to other classes where the methods have been defined in only one class. If the methods, some of which have input parameters and non-void return types, are defined in one class, I want to be able to pass a list of some of them, with possible duplicates, as a parameter to some other class's constructor.
Code Description: The code below is a crude example and can be ignored if it detracts from the main goal. Another example, in addition to the one below, would be a case where the methods are int Add(int n1, int n2), int Subtract(int n1, int n2), Multiply, etc.. and the interface has a method called int MathOperation(int n1, int n2).
Attempt to solve the problem: The adapter pattern seems to have the functionality I'm looking for but I have only seen examples where the methods in the interface have no input or output parameters. An example implementation I wrote just for this question is posted below.
Problem Analogy: You have a random picture generator web service. There are 30 mutations that can be applied to an image. The client connects and clicks a "generate" button and a random list of some of those functions are passed to some other class within the web service which then proceeds to run those functions with it's own data while also collecting and possibly re-using the return values to generate some mutated cat image. It can't just explicitly call the methods in the other class because that process needs to be done randomly at run-time. That is why I lean towards the idea of generating a random list of methods which are executed in-order when the 'generate' button is clicked.
I hope I have been clear.
public class SomeClass {
...
public double UseWrench(double torque, boolean clockwise) { ... }
public double UsePliers(double torque, boolean clockwise) { ... }
public double UseScrewDriver(double torque, boolean clockwise) { ... }
public boolean UseWireCutters(double torque) { ... }
interface IToolActions {
double TurnFastener(double torque, boolean clockwise);
boolean CutWire(double torque);
}
private IToolActions[] toolActions = new IToolActions[] {
new IToolActions() { public double TurnFastener(double torque, boolean clockwise) { double UseWrench(double torque, boolean clockwise); } },
new IToolActions() { public double TurnFastener(double torque, boolean clockwise) { double UsePliers(double torque, boolean clockwise); } },
new IToolActions() { public double TurnFastener(double torque, boolean clockwise) { double UseScrewDriver(double torque, boolean clockwise); } },
new IToolActions() { public boolean CutWire(double torque) { boolean UseWireCutters(double torque); } },
};
}
public class Worker<T> {
public List<? extends IToolActions> toolActions;
public Worker(List<? extends IToolActions> initialToolSet){
toolActions = initialToolActions;
}
}
This pattern involves a single class which is responsible to join functionalities of independent or incompatible interfaces. A real life example could be a case of card reader which acts as an adapter between memory card and a laptop.
One of the great real life example of Adapter design pattern is mobile charger. Mobile battery needs 3 volts to charge but the normal socket produces either 120V (US) or 240V (India). So the mobile charger works as an adapter between mobile charging socket and the wall socket.
If you do some research on the adapter pattern, you will find two different versions of it: The class adapter pattern that implements the adapter using inheritance. The object adapter pattern that uses composition to reference an instance of the wrapped class within the adapter.
While @alainlompo has the general idea, Java 8 simplifies this greatly by using something such as BiConsumer
(for doubles) or even just a Consumer
for the class object. In fact, you can go really crazy, and have a method accept varargs lambdas:
public class SomeClass
public double useWrench(double torque, boolean clockwise) { ... }
public double usePliers(double torque, boolean clockwise) { ... }
public double useScrewDriver(double torque, boolean clockwise) { ... }
public boolean useWireCutters(double torque) { ... }
}
public class Worker {
@SafeVarargs
public Worker(SomeClass example, Consumer<? extends SomeClass>... operations) {
for (Consumer bc : operations) {
bc.accept(example);
}
}
}
Then, this is easily simplified:
SomeClass c = new SomeClass();
new Worker(c, SomeClass::useWrench, SomeClass:usePliers, SomeClass::useScrewDriver, SomeClass::useWireCutters);
While it seems a little awkward applying it like that (due to it being an Adapter pattern), you can easily see how this could apply to a class body:
public class SomeClass
public double useWrench(double torque, boolean clockwise) { ... }
public double usePliers(double torque, boolean clockwise) { ... }
public double useScrewDriver(double torque, boolean clockwise) { ... }
public boolean useWireCutters(double torque) { ... }
@SafeVarargs
public void operate(Consumer<? extends SomeClass>... operations) {
for (Consumer<? extends SomeClass> bc : operations) {
bc.accept(example);
}
}
}
//Elsewheres
SomeClass c = new SomeClass();
c.operate(SomeClass::useWrench, SomeClass:usePliers, SomeClass::useScrewDriver, SomeClass::useWireCutters);
Of course, you don't need varargs, it will work just as well simply passing a Collection
But wait there's more!!!
If you wanted a result, you can even use a self-returning method via a Function
, e.g.:
public class SomeClass {
public double chanceOfSuccess(Function<? super SomeClass, ? extends Double> modifier) {
double back = /* some pre-determined result */;
return modifier.apply(back); //apply our external modifier
}
}
//With our old 'c'
double odds = c.chanceOfSuccess(d -> d * 2); //twice as likely!
There's so much more flexibility provided from the Function API in java 8, making complex problems like this incredibly simplified to write.
@John here is how I have approached a solution to your problem.
I used the case of MathOperations to make it simpler. I think first that I would be better to have the interface outside of SomeClass like:
public interface MathOperable {
public int mathOperation(int n1, int n2);
}
I created two examples of classes implementing this interface and one anonymous implementation inside SomeClass (I did an Add, Multiply and an anonymous "Substract")
public class Add implements MathOperable {
public int mathOperation(int n1, int n2) {
return n1 + n2;
}
public String toString() {
return "<addition>";
}
}
The overriding of toString() is simply for the purpose of giving more readability to the examples that I will show at the end of my post.
public class Multiply implements MathOperable {
public int mathOperation(int n1, int n2) {
// TODO Auto-generated method stub
return n1 * n2;
}
public String toString() {
return "<multiplication>";
}
}
Here is my SomeClass class, it contans a getRandomListOfOperations, where I simulate what happens when the click on the button is done
public class SomeClass {
private static MathOperable addition = new Add();
private static MathOperable multiplication = new Multiply();
// Anonymous substraction
private static MathOperable substraction = new MathOperable() {
public int mathOperation(int n1, int n2) {
// TODO Auto-generated method stub
return n1-n2;
}
public String toString() {
return "<substraction>";
}
};
public List<MathOperable> getRandomListOfOperations() {
// We put the methods in an array so that we can pick them up later randomly
MathOperable[] methods = new MathOperable[] {addition, multiplication, substraction};
Random r = new Random();
// Since duplication is possible whe randomly generate the number of methods to send
// among three so if numberOfMethods > 3 we are sure there will be duplicates
int numberOfMethods = r.nextInt(10);
List<MathOperable> methodsList = new ArrayList<MathOperable>();
// We pick randomly the methods with duplicates
for (int i = 0; i < numberOfMethods; i++) {
methodsList.add(methods[r.nextInt(3)]);
}
return methodsList;
}
public void contactSomeOtherClass() {
new SomeOtherClass(getRandomListOfOperations());
}
}
Now here is my SomeOtherClass (which may correspond to your Worker class)
public class SomeOtherClass<T extends MathOperable> {
Random r = new Random();
List<T> operations;
public SomeOtherClass(List<T> operations) {
this.operations = operations;
runIt();
}
public void runIt() {
if (null == operations) {
return;
}
// Let's imagine for example that the new result is taken as operand1 for the next operation
int result = 0;
// Here are examples of the web service own datas
int n10 = r.nextInt(100);
int n20 = r.nextInt(100);
for (int i = 0; i < operations.size(); i++) {
if (i == 0) {
result = operations.get(i).mathOperation(n10, n20);
System.out.println("Result for operation N " + i + " = " + result);
} else {
// Now let's imagine another data from the web service operated with the previous result
int n2 = r.nextInt(100);
result = operations.get(i).mathOperation(result, n2);
System.out.println("Current result for operation N " + i + " which is " + operations.get(i) +" = " + result);
}
}
}
}
I have a simple test class that contains a main to connect the two classes
public class SomeTestClass {
public static void main(String[] args) {
SomeClass classe = new SomeClass();
classe.contactSomeOtherClass();
}
}
Now a few examples of executions:
And another illustration!
I hope this could be helpful!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With