I have a list in a data frame of thousands of names in a long list. Many of the names have small differences in them which make them slightly different. I would like to find a way to match these names. For example:
names <- c('jon smith','jon, smith','Jon Smith','jon smith et al','bob seger','bob, seger','bobby seger','bob seger jr.')
I've looked at amatch
in the stringdist
function, as well as agrep
, but these all require a master list of names that are used to match another list of names against. In my case, I don't have such a master list so I'd like to create one from the data by identifying names with highly similar patterns so I can look at them and decide whether they're the same person (which in many cases they are). I'd like an output in a new column that helps me to know these are a likely match, and maybe some sort of similarity score based on Levenshtein distance or something. Maybe something like this:
names match SimilarityScore
1 jon smith a 9
2 jon, smith a 8
3 Jon Smith a 9
4 jon smith et al a 5
5 bob seger b 9
6 bob, seger b 8
7 bobby seger b 7
8 bob seger jr. b 5
Is something like this possible?
Drawing upon the post found here I have found that hierarchical text clustering will do what I'm looking for.
names <- c('jon smith','jon, smith','Jon Smith','jon smith et al','bob seger','bob, seger','bobby seger','bob seger jr.','jake','jakey','jack','jakeyfied')
# Levenshtein Distance
e <- adist(names)
rownames(e) <- names
hc <- hclust(as.dist(e))
plot(hc)
rect.hclust(hc,k=3) #the k value provides the number of clusters
df <- data.frame(names,cutree(hc,k=3))
The output looks really good if you pick the right number of clusters (three in this case):
names cutree.hc..k...3.
jon smith jon smith 1
jon, smith jon, smith 1
Jon Smith Jon Smith 1
jon smith et al jon smith et al 1
bob seger bob seger 2
bob, seger bob, seger 2
bobby seger bobby seger 2
bob seger jr. bob seger jr. 2
jake jake 3
jakey jakey 3
jack jack 3
jakeyfied jakeyfied 3
However, names are oftentimes more complex than this, and after adding a few more difficult names, I found that the default adist
options didn't give the best clustering:
names <- c('jon smith','jon, smith','Jon Smith','jon smith et al','bob seger','bob, seger','bobby seger','bob seger jr.','jake','jakey','jack','jakeyfied','1234 ranch','5678 ranch','9983','7777')
d <- adist(names)
rownames(d) <- names
hc <- hclust(as.dist(d))
plot(hc)
rect.hclust(hc,k=6)
I was able to improve upon this by increasing the cost of the substitution value to 2 and leaving the insertion and deletion costs at 1, and ignoring case. This helped to to minimize the mistaken grouping of totally different four character number strings, which I didn't want grouped:
d <- adist(names,ignore.case=TRUE, costs=c(i=1,d=1,s=2)) #i=insertion, d=deletion s=substitution
rownames(d) <- names
hc <- hclust(as.dist(d))
plot(hc)
rect.hclust(hc,k=6
I further fine tuned the clustering by removing common terms such as "ranch" and "et al" using the gsub
tool in the grep
package and increasing the number of clusters by one:
names<-gsub("ranch","",names)
names<-gsub("et al","",names)
d <- adist(names,ignore.case=TRUE, costs=c(i=1,d=1,s=2))
rownames(d) <- names
hc <- hclust(as.dist(d))
plot(hc)
rect.hclust(hc,k=7)
Although there are methods to let the data sort out the best number of clusters instead of manually trying to pick the number, I found that it was easiest to use trial and error, although there is information here about that approach.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With