I am trying to recode NA
values to 0
in a subset of columns using the following dataset:
set.seed(1)
df <- data.frame(
id = c(1:10),
trials = sample(1:3, 10, replace = T),
t1 = c(sample(c(1:9, NA), 10)),
t2 = c(sample(c(1:7, rep(NA, 3)), 10)),
t3 = c(sample(c(1:5, rep(NA, 5)), 10))
)
Each row has a certain number of trials associated with it (between 1-3), specified by the trials
column. columns t1-t3
represent scores for each trial.
The number of trials indicates the subset of columns in which NA
s should be recoded to 0
: NA
s that are within the number of trials represent missing data, and should be recoded as 0
, while NA
s outside the number of trials are not meaningful, and should remain NA
s. So, for a row where trials == 3
, an NA
in column t3
would be recoded as 0
, but in a row where trials == 2
, an NA
in t3
would remain an NA
.
So, I tried using this function:
replace0 <- function(x, num.sun) {
x[which(is.na(x[1:(num.sun + 2)]))] <- 0
return(x)
}
This works well for single vectors. When I try applying the same function to a data frame with apply()
, though:
apply(df, 1, replace0, num.sun = df$trials)
I get a warning saying:
In 1:(num.sun + 2) :
numerical expression has 10 elements: only the first used
The result is that instead of having the value of num.sun
change every row according to the value in trials
, apply()
simply uses the first value in the trials
column for every single row. How could I apply the function so that the num.sun
argument changes according to the value of df$trials
?
Thanks!
Edit: as some have commented, the original example data had some non-NA scores that didn't make sense according to the trials column. Here's a corrected dataset:
df <- data.frame(
id = c(1:5),
trials = c(rep(1, 2), rep(2, 1), rep(3, 2)),
t1 = c(NA, 7, NA, 6, NA),
t2 = c(NA, NA, 3, 7, 12),
t3 = c(NA, NA, NA, 4, NA)
)
In order to apply a function to every row, you should use axis=1 param to apply(). By applying a function to each row, we can create a new column by using the values from the row, updating the row e.t.c. Note that by default it uses axis=0 meaning it applies a function to each column.
Python is a great language for performing data analysis tasks. It provides with a huge amount of Classes and function which help in analyzing and manipulating data in an easier way. One can use apply() function in order to apply function to every row in given dataframe.
The apply() function is used to apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (axis=0) or the DataFrame's columns (axis=1).
Another approach:
# create an index of the NA values
w <- which(is.na(df), arr.ind = TRUE)
# create an index with the max column by row where an NA is allowed to be replaced by a zero
m <- matrix(c(1:nrow(df), (df$trials + 2)), ncol = 2)
# subset 'w' such that only the NA's which fall in the scope of 'm' remain
i <- w[w[,2] <= m[,2][match(w[,1], m[,1])],]
# use 'i' to replace the allowed NA's with a zero
df[i] <- 0
which gives:
> df id trials t1 t2 t3 1 1 1 3 NA 5 2 2 2 2 2 NA 3 3 2 6 6 4 4 4 3 0 1 2 5 5 1 5 NA NA 6 6 3 7 0 0 7 7 3 8 7 0 8 8 2 4 5 1 9 9 2 1 3 NA 10 10 1 9 4 3
You could easily wrap this in a function:
replace.NA.with.0 <- function(df) {
w <- which(is.na(df), arr.ind = TRUE)
m <- matrix(c(1:nrow(df), (df$trials + 2)), ncol = 2)
i <- w[w[,2] <= m[,2][match(w[,1], m[,1])],]
df[i] <- 0
return(df)
}
Now, using replace.NA.with.0(df)
will produce the above result.
As noted by others, some rows (1, 3 & 10) have more values than trails. You could tackle that problem by rewriting the above function to:
replace.with.NA.or.0 <- function(df) {
w <- which(is.na(df), arr.ind = TRUE)
df[w] <- 0
v <- tapply(m[,2], m[,1], FUN = function(x) tail(x:5,-1))
ina <- matrix(as.integer(unlist(stack(v)[2:1])), ncol = 2)
df[ina] <- NA
return(df)
}
Now, using replace.with.NA.or.0(df)
produces the following result:
id trials t1 t2 t3 1 1 1 3 NA NA 2 2 2 2 2 NA 3 3 2 6 6 NA 4 4 3 0 1 2 5 5 1 5 NA NA 6 6 3 7 0 0 7 7 3 8 7 0 8 8 2 4 5 NA 9 9 2 1 3 NA 10 10 1 9 NA NA
Here I just rewrite your function using double subsetting x[paste0('t',x['trials'])]
, which overcome the problem in the other two solutions with row 6
replace0 <- function(x){
#browser()
x_na <- x[paste0('t',x['trials'])]
if(is.na(x_na)){x[paste0('t',x['trials'])] <- 0}
return(x)
}
t(apply(df, 1, replace0))
id trials t1 t2 t3
[1,] 1 1 3 NA 5
[2,] 2 2 2 2 NA
[3,] 3 2 6 6 4
[4,] 4 3 NA 1 2
[5,] 5 1 5 NA NA
[6,] 6 3 7 NA 0
[7,] 7 3 8 7 0
[8,] 8 2 4 5 1
[9,] 9 2 1 3 NA
[10,] 10 1 9 4 3
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With