I have installed Numpy and SciPy, but I'm not quite understand their documentation about polyfit
.
For exmpale, Here's my three data samples:
[-0.042780748663101636, -0.0040771571786609945, -0.00506567946276074]
[0.042780748663101636, -0.0044771571786609945, -0.10506567946276074]
[0.542780748663101636, -0.005771571786609945, 0.30506567946276074]
[-0.342780748663101636, -0.0304077157178660995, 0.90506567946276074]
The first two columns are sample features, the third column is output, My target is to get a function that could take two parameters(first two columns) and return its prediction(the output).
Any simple example ?
====================== EDIT ======================
Note that, I need to fit something like a curve
, not only straight lines. The polynomial should be something like this ( n = 3):
a*x1^3 + b*x2^2 + c*x3 + d = y
Not:
a*x1 + b*x2 + c*x3 + d = y
x1
,x2
,x3
are features of one sample,y
is the output
Try something like
edit: added an example function that used results of linear regression to estimate output.
import numpy as np
data =np.array(
[[-0.042780748663101636, -0.0040771571786609945, -0.00506567946276074],
[0.042780748663101636, -0.0044771571786609945, -0.10506567946276074],
[0.542780748663101636, -0.005771571786609945, 0.30506567946276074],
[-0.342780748663101636, -0.0304077157178660995, 0.90506567946276074]])
coefficient = data[:,0:2]
dependent = data[:,-1]
x,residuals,rank,s = np.linalg.lstsq(coefficient,dependent)
def f(x,u,v):
return u*x[0] + v*x[1]
for datum in data:
print f(x,*datum[0:2])
Which gives
>>> x
array([ 0.16991146, -30.18923739])
>>> residuals
array([ 0.07941146])
>>> rank
2
>>> s
array([ 0.64490113, 0.02944663])
and the function created with your coefficients gave
0.115817326583
0.142430900298
0.266464019171
0.859743371665
More info can be found at the documentation I posted as a comment.
edit 2: fitting your data to an arbitrary model.
edit 3: made my model a function for ease of understanding.
edit 4: made code more easily read/ changed model to a quadratic fit, but you should be able to read this code and know how to make it minimize any residual you want now.
contrived example:
import numpy as np
from scipy.optimize import leastsq
data =np.array(
[[-0.042780748663101636, -0.0040771571786609945, -0.00506567946276074],
[0.042780748663101636, -0.0044771571786609945, -0.10506567946276074],
[0.542780748663101636, -0.005771571786609945, 0.30506567946276074],
[-0.342780748663101636, -0.0304077157178660995, 0.90506567946276074]])
coefficient = data[:,0:2]
dependent = data[:,-1]
def model(p,x):
a,b,c = p
u = x[:,0]
v = x[:,1]
return (a*u**2 + b*v + c)
def residuals(p, y, x):
a,b,c = p
err = y - model(p,x)
return err
p0 = np.array([2,3,4]) #some initial guess
p = leastsq(residuals, p0, args=(dependent, coefficient))[0]
def f(p,x):
return p[0]*x[0] + p[1]*x[1] + p[2]
for x in coefficient:
print f(p,x)
gives
-0.108798280153
-0.00470479385807
0.570237823475
0.413016072653
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With