I am trying to transform DataFrame, such that some of the rows will be replicated a given number of times. For example:
df = pd.DataFrame({'class': ['A', 'B', 'C'], 'count':[1,0,2]})
class count
0 A 1
1 B 0
2 C 2
should be transformed to:
class
0 A
1 C
2 C
This is the reverse of aggregation with count function. Is there an easy way to achieve it in pandas (without using for loops or list comprehensions)?
One possibility might be to allow DataFrame.applymap
function return multiple rows (akin apply
method of GroupBy
). However, I do not think it is possible in pandas now.
Return Multiple Columns from pandas apply() You can return a Series from the apply() function that contains the new data. pass axis=1 to the apply() function which applies the function multiply to each row of the DataFrame, Returns a series of multiple columns from pandas apply() function.
We can also add multiple rows using the pandas. concat() by creating a new dataframe of all the rows that we need to add and then appending this dataframe to the original dataframe.
Select first N Rows from a Dataframe using head() function In Python's Pandas module, the Dataframe class provides a head() function to fetch top rows from a Dataframe i.e. It returns the first n rows from a dataframe.
You can get pandas. Series of bool which is an AND of two conditions using & . Note that == and ~ are used here as the second condition for the sake of explanation, but you can use !=
You could use groupby:
def f(group):
row = group.irow(0)
return DataFrame({'class': [row['class']] * row['count']})
df.groupby('class', group_keys=False).apply(f)
so you get
In [25]: df.groupby('class', group_keys=False).apply(f)
Out[25]:
class
0 A
0 C
1 C
You can fix the index of the result however you like
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With