I have a pandas DataFrame, st containing multiple columns:
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 53732 entries, 1993-01-07 12:23:58 to 2012-12-02 20:06:23 Data columns: Date(dd-mm-yy)_Time(hh-mm-ss)       53732  non-null values Julian_Day                          53732  non-null values AOT_1020                            53716  non-null values AOT_870                             53732  non-null values AOT_675                             53188  non-null values AOT_500                             51687  non-null values AOT_440                             53727  non-null values AOT_380                             51864  non-null values AOT_340                             52852  non-null values Water(cm)                           51687  non-null values %TripletVar_1020                    53710  non-null values %TripletVar_870                     53726  non-null values %TripletVar_675                     53182  non-null values %TripletVar_500                     51683  non-null values %TripletVar_440                     53721  non-null values %TripletVar_380                     51860  non-null values %TripletVar_340                     52846  non-null values 440-870Angstrom                     53732  non-null values 380-500Angstrom                     52253  non-null values 440-675Angstrom                     53732  non-null values 500-870Angstrom                     53732  non-null values 340-440Angstrom                     53277  non-null values Last_Processing_Date(dd/mm/yyyy)    53732  non-null values Solar_Zenith_Angle                  53732  non-null values dtypes: datetime64[ns](1), float64(22), object(1)   I want to create two new columns for this dataframe based on applying a function to each row of the dataframe. I don't want to have to call the function multiple times (eg. by doing two separate apply calls) as it is rather computationally intensive. I have tried doing this in two ways, and neither of them work:
Using apply:
I have written a function which takes a Series and returns a tuple of the values I want:
def calculate(s):     a = s['path'] + 2*s['row'] # Simple calc for example     b = s['path'] * 0.153     return (a, b)   Trying to apply this to the DataFrame gives an error:
st.apply(calculate, axis=1) --------------------------------------------------------------------------- AssertionError                            Traceback (most recent call last) <ipython-input-248-acb7a44054a7> in <module>() ----> 1 st.apply(calculate, axis=1)  C:\Python27\lib\site-packages\pandas\core\frame.pyc in apply(self, func, axis, broadcast, raw, args, **kwds)    4191                     return self._apply_raw(f, axis)    4192                 else: -> 4193                     return self._apply_standard(f, axis)    4194             else:    4195                 return self._apply_broadcast(f, axis)  C:\Python27\lib\site-packages\pandas\core\frame.pyc in _apply_standard(self, func, axis, ignore_failures)    4274                 index = None    4275  -> 4276             result = self._constructor(data=results, index=index)    4277             result.rename(columns=dict(zip(range(len(res_index)), res_index)),    4278                           inplace=True)  C:\Python27\lib\site-packages\pandas\core\frame.pyc in __init__(self, data, index, columns, dtype, copy)     390             mgr = self._init_mgr(data, index, columns, dtype=dtype, copy=copy)     391         elif isinstance(data, dict): --> 392             mgr = self._init_dict(data, index, columns, dtype=dtype)     393         elif isinstance(data, ma.MaskedArray):     394             mask = ma.getmaskarray(data)  C:\Python27\lib\site-packages\pandas\core\frame.pyc in _init_dict(self, data, index, columns, dtype)     521      522         return _arrays_to_mgr(arrays, data_names, index, columns, --> 523                               dtype=dtype)     524      525     def _init_ndarray(self, values, index, columns, dtype=None,  C:\Python27\lib\site-packages\pandas\core\frame.pyc in _arrays_to_mgr(arrays, arr_names, index, columns, dtype)    5411     5412     # consolidate for now -> 5413     mgr = BlockManager(blocks, axes)    5414     return mgr.consolidate()    5415   C:\Python27\lib\site-packages\pandas\core\internals.pyc in __init__(self, blocks, axes, do_integrity_check)     802      803         if do_integrity_check: --> 804             self._verify_integrity()     805      806         self._consolidate_check()  C:\Python27\lib\site-packages\pandas\core\internals.pyc in _verify_integrity(self)     892                                      "items")     893             if block.values.shape[1:] != mgr_shape[1:]: --> 894                 raise AssertionError('Block shape incompatible with manager')     895         tot_items = sum(len(x.items) for x in self.blocks)     896         if len(self.items) != tot_items:  AssertionError: Block shape incompatible with manager   I was then going to assign the values returned from apply to two new columns using the method shown in this question. However, I can't even get to this point! This all works fine if I just return one value.
Using a loop:
I first created two new columns of the dataframe and set them to None:
st['a'] = None st['b'] = None   Then looped over all of the indices and tried to modify these None values that I'd got in there, but the modifications I did didn't seem to work. That is, no error was generated, but the DataFrame didn't seem to be modified.
for i in st.index:     # do calc here     st.ix[i]['a'] = a     st.ix[i]['b'] = b   I thought that both of these methods would work, but neither of them did. So, what am I doing wrong here? And what is the best, most 'pythonic' and 'pandaonic' way to do this?
Combine Two Columns Using + Operator By use + operator simply you can combine/merge two or multiple text/string columns in pandas DataFrame. Note that when you apply + operator on numeric columns it actually does addition instead of concatenation.
You can use the assign() function to add a new column to the end of a pandas DataFrame: df = df. assign(col_name=[value1, value2, value3, ...])
Method 2: Pandas divide two columns using div() function It divides the columns elementwise. It accepts a scalar value, series, or dataframe as an argument for dividing with the axis. If the axis is 0 the division is done row-wise and if the axis is 1 then division is done column-wise.
To make the first approach work, try returning a Series instead of a tuple (apply is throwing an exception because it doesn't know how to glue the rows back together as the number of columns doesn't match the original frame).
def calculate(s):     a = s['path'] + 2*s['row'] # Simple calc for example     b = s['path'] * 0.153     return pd.Series(dict(col1=a, col2=b))   The second approach should work if you replace:
st.ix[i]['a'] = a   with:
st.ix[i, 'a'] = a 
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With