I have a pandas DataFrame, st
containing multiple columns:
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 53732 entries, 1993-01-07 12:23:58 to 2012-12-02 20:06:23 Data columns: Date(dd-mm-yy)_Time(hh-mm-ss) 53732 non-null values Julian_Day 53732 non-null values AOT_1020 53716 non-null values AOT_870 53732 non-null values AOT_675 53188 non-null values AOT_500 51687 non-null values AOT_440 53727 non-null values AOT_380 51864 non-null values AOT_340 52852 non-null values Water(cm) 51687 non-null values %TripletVar_1020 53710 non-null values %TripletVar_870 53726 non-null values %TripletVar_675 53182 non-null values %TripletVar_500 51683 non-null values %TripletVar_440 53721 non-null values %TripletVar_380 51860 non-null values %TripletVar_340 52846 non-null values 440-870Angstrom 53732 non-null values 380-500Angstrom 52253 non-null values 440-675Angstrom 53732 non-null values 500-870Angstrom 53732 non-null values 340-440Angstrom 53277 non-null values Last_Processing_Date(dd/mm/yyyy) 53732 non-null values Solar_Zenith_Angle 53732 non-null values dtypes: datetime64[ns](1), float64(22), object(1)
I want to create two new columns for this dataframe based on applying a function to each row of the dataframe. I don't want to have to call the function multiple times (eg. by doing two separate apply
calls) as it is rather computationally intensive. I have tried doing this in two ways, and neither of them work:
Using apply
:
I have written a function which takes a Series
and returns a tuple of the values I want:
def calculate(s): a = s['path'] + 2*s['row'] # Simple calc for example b = s['path'] * 0.153 return (a, b)
Trying to apply this to the DataFrame gives an error:
st.apply(calculate, axis=1) --------------------------------------------------------------------------- AssertionError Traceback (most recent call last) <ipython-input-248-acb7a44054a7> in <module>() ----> 1 st.apply(calculate, axis=1) C:\Python27\lib\site-packages\pandas\core\frame.pyc in apply(self, func, axis, broadcast, raw, args, **kwds) 4191 return self._apply_raw(f, axis) 4192 else: -> 4193 return self._apply_standard(f, axis) 4194 else: 4195 return self._apply_broadcast(f, axis) C:\Python27\lib\site-packages\pandas\core\frame.pyc in _apply_standard(self, func, axis, ignore_failures) 4274 index = None 4275 -> 4276 result = self._constructor(data=results, index=index) 4277 result.rename(columns=dict(zip(range(len(res_index)), res_index)), 4278 inplace=True) C:\Python27\lib\site-packages\pandas\core\frame.pyc in __init__(self, data, index, columns, dtype, copy) 390 mgr = self._init_mgr(data, index, columns, dtype=dtype, copy=copy) 391 elif isinstance(data, dict): --> 392 mgr = self._init_dict(data, index, columns, dtype=dtype) 393 elif isinstance(data, ma.MaskedArray): 394 mask = ma.getmaskarray(data) C:\Python27\lib\site-packages\pandas\core\frame.pyc in _init_dict(self, data, index, columns, dtype) 521 522 return _arrays_to_mgr(arrays, data_names, index, columns, --> 523 dtype=dtype) 524 525 def _init_ndarray(self, values, index, columns, dtype=None, C:\Python27\lib\site-packages\pandas\core\frame.pyc in _arrays_to_mgr(arrays, arr_names, index, columns, dtype) 5411 5412 # consolidate for now -> 5413 mgr = BlockManager(blocks, axes) 5414 return mgr.consolidate() 5415 C:\Python27\lib\site-packages\pandas\core\internals.pyc in __init__(self, blocks, axes, do_integrity_check) 802 803 if do_integrity_check: --> 804 self._verify_integrity() 805 806 self._consolidate_check() C:\Python27\lib\site-packages\pandas\core\internals.pyc in _verify_integrity(self) 892 "items") 893 if block.values.shape[1:] != mgr_shape[1:]: --> 894 raise AssertionError('Block shape incompatible with manager') 895 tot_items = sum(len(x.items) for x in self.blocks) 896 if len(self.items) != tot_items: AssertionError: Block shape incompatible with manager
I was then going to assign the values returned from apply
to two new columns using the method shown in this question. However, I can't even get to this point! This all works fine if I just return one value.
Using a loop:
I first created two new columns of the dataframe and set them to None
:
st['a'] = None st['b'] = None
Then looped over all of the indices and tried to modify these None
values that I'd got in there, but the modifications I did didn't seem to work. That is, no error was generated, but the DataFrame didn't seem to be modified.
for i in st.index: # do calc here st.ix[i]['a'] = a st.ix[i]['b'] = b
I thought that both of these methods would work, but neither of them did. So, what am I doing wrong here? And what is the best, most 'pythonic' and 'pandaonic' way to do this?
Combine Two Columns Using + Operator By use + operator simply you can combine/merge two or multiple text/string columns in pandas DataFrame. Note that when you apply + operator on numeric columns it actually does addition instead of concatenation.
You can use the assign() function to add a new column to the end of a pandas DataFrame: df = df. assign(col_name=[value1, value2, value3, ...])
Method 2: Pandas divide two columns using div() function It divides the columns elementwise. It accepts a scalar value, series, or dataframe as an argument for dividing with the axis. If the axis is 0 the division is done row-wise and if the axis is 1 then division is done column-wise.
To make the first approach work, try returning a Series instead of a tuple (apply is throwing an exception because it doesn't know how to glue the rows back together as the number of columns doesn't match the original frame).
def calculate(s): a = s['path'] + 2*s['row'] # Simple calc for example b = s['path'] * 0.153 return pd.Series(dict(col1=a, col2=b))
The second approach should work if you replace:
st.ix[i]['a'] = a
with:
st.ix[i, 'a'] = a
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With