How can I use apply
or a related function to create a new data frame that contains the results of the row averages of each pair of columns in a very large data frame?
I have an instrument that outputs n
replicate measurements on a large number of samples, where each single measurement is a vector (all measurements are the same length vectors). I'd like to calculate the average (and other stats) on all replicate measurements of each sample. This means I need to group n
consecutive columns together and do row-wise calculations.
For a simple example, with three replicate measurements on two samples, how can I end up with a data frame that has two columns (one per sample), one that is the average each row of the replicates in dat$a
, dat$b
and dat$c
and one that is the average of each row for dat$d
, dat$e
and dat$f
.
Here's some example data
dat <- data.frame( a = rnorm(16), b = rnorm(16), c = rnorm(16), d = rnorm(16), e = rnorm(16), f = rnorm(16))
a b c d e f
1 -0.9089594 -0.8144765 0.872691548 0.4051094 -0.09705234 -1.5100709
2 0.7993102 0.3243804 0.394560355 0.6646588 0.91033497 2.2504104
3 0.2963102 -0.2911078 -0.243723116 1.0661698 -0.89747522 -0.8455833
4 -0.4311512 -0.5997466 -0.545381175 0.3495578 0.38359390 0.4999425
5 -0.4955802 1.8949285 -0.266580411 1.2773987 -0.79373386 -1.8664651
6 1.0957793 -0.3326867 -1.116623982 -0.8584253 0.83704172 1.8368212
7 -0.2529444 0.5792413 -0.001950741 0.2661068 1.17515099 0.4875377
8 1.2560402 0.1354533 1.440160168 -2.1295397 2.05025701 1.0377283
9 0.8123061 0.4453768 1.598246016 0.7146553 -1.09476532 0.0600665
10 0.1084029 -0.4934862 -0.584671816 -0.8096653 1.54466019 -1.8117459
11 -0.8152812 0.9494620 0.100909570 1.5944528 1.56724269 0.6839954
12 0.3130357 2.6245864 1.750448404 -0.7494403 1.06055267 1.0358267
13 1.1976817 -1.2110708 0.719397607 -0.2690107 0.83364274 -0.6895936
14 -2.1860098 -0.8488031 -0.302743475 -0.7348443 0.34302096 -0.8024803
15 0.2361756 0.6773727 1.279737692 0.8742478 -0.03064782 -0.4874172
16 -1.5634527 -0.8276335 0.753090683 2.0394865 0.79006103 0.5704210
I'm after something like this
X1 X2
1 -0.28358147 -0.40067128
2 0.50608365 1.27513471
3 -0.07950691 -0.22562957
4 -0.52542633 0.41103139
5 0.37758930 -0.46093340
6 -0.11784382 0.60514586
7 0.10811540 0.64293184
8 0.94388455 0.31948189
9 0.95197629 -0.10668118
10 -0.32325169 -0.35891702
11 0.07836345 1.28189698
12 1.56269017 0.44897971
13 0.23533617 -0.04165384
14 -1.11251880 -0.39810121
15 0.73109533 0.11872758
16 -0.54599850 1.13332286
which I did with this, but is obviously no good for my much larger data frame...
data.frame(cbind(
apply(cbind(dat$a, dat$b, dat$c), 1, mean),
apply(cbind(dat$d, dat$e, dat$f), 1, mean)
))
I've tried apply
and loops and can't quite get it together. My actual data has some hundreds of columns.
Just select the cell F2, place the cursor on the bottom right corner, hold and drag the Fill handle to apply the formula to the entire column in all adjacent cells.
To pick out single or multiple columns use the select() function. The select() function expects a dataframe as it's first input ('argument', in R language), followed by the names of the columns you want to extract with a comma between each name.
across() makes it easy to apply the same transformation to multiple columns, allowing you to use select() semantics inside in "data-masking" functions like summarise() and mutate() .
This may be more generalizable to your situation in that you pass a list of indices. If speed is an issue (large data frame) I'd opt for lapply
with do.call
rather than sapply
:
x <- list(1:3, 4:6)
do.call(cbind, lapply(x, function(i) rowMeans(dat[, i])))
Works if you just have col names too:
x <- list(c('a','b','c'), c('d', 'e', 'f'))
do.call(cbind, lapply(x, function(i) rowMeans(dat[, i])))
EDIT
Just happened to think maybe you want to automate this to do every three columns. I know there's a better way but here it is on a 100 column data set:
dat <- data.frame(matrix(rnorm(16*100), ncol=100))
n <- 1:ncol(dat)
ind <- matrix(c(n, rep(NA, 3 - ncol(dat)%%3)), byrow=TRUE, ncol=3)
ind <- data.frame(t(na.omit(ind)))
do.call(cbind, lapply(ind, function(i) rowMeans(dat[, i])))
EDIT 2 Still not happy with the indexing. I think there's a better/faster way to pass the indexes. here's a second though not satisfying method:
n <- 1:ncol(dat)
ind <- data.frame(matrix(c(n, rep(NA, 3 - ncol(dat)%%3)), byrow=F, nrow=3))
nonna <- sapply(ind, function(x) all(!is.na(x)))
ind <- ind[, nonna]
do.call(cbind, lapply(ind, function(i)rowMeans(dat[, i])))
A similar question was asked here by @david: averaging every 16 columns in r (now closed), which I answered by adapting @TylerRinker's answer above, following a suggestion by @joran and @Ben. Because the resulting function might be of help to OP or future readers, I am copying that function here, along with an example for OP's data.
# Function to apply 'fun' to object 'x' over every 'by' columns
# Alternatively, 'by' may be a vector of groups
byapply <- function(x, by, fun, ...)
{
# Create index list
if (length(by) == 1)
{
nc <- ncol(x)
split.index <- rep(1:ceiling(nc / by), each = by, length.out = nc)
} else # 'by' is a vector of groups
{
nc <- length(by)
split.index <- by
}
index.list <- split(seq(from = 1, to = nc), split.index)
# Pass index list to fun using sapply() and return object
sapply(index.list, function(i)
{
do.call(fun, list(x[, i], ...))
})
}
Then, to find the mean of the replicates:
byapply(dat, 3, rowMeans)
Or, perhaps the standard deviation of the replicates:
byapply(dat, 3, apply, 1, sd)
Update
by
can also be specified as a vector of groups:
byapply(dat, c(1,1,1,2,2,2), rowMeans)
mean for rows from vectors a,b,c
rowMeans(dat[1:3])
means for rows from vectors d,e,f
rowMeans(dat[4:6])
all in one call you get
results<-cbind(rowMeans(dat[1:3]),rowMeans(dat[4:6]))
if you only know the names of the columns and not the order then you can use:
rowMeans(cbind(dat["a"],dat["b"],dat["c"]))
rowMeans(cbind(dat["d"],dat["e"],dat["f"]))
#I dont know how much damage this does to speed but should still be quick
The rowMeans
solution will be faster, but for completeness here's how you might do this with apply
:
t(apply(dat,1,function(x){ c(mean(x[1:3]),mean(x[4:6])) }))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With