Currently I'm using matplotlib to plot a 3d scatter and while it gets the job done, I can't seem to find a way to rotate it to see my data better.
Here's an example:
import pylab as p import mpl_toolkits.mplot3d.axes3d as p3 #data is an ndarray with the necessary data and colors is an ndarray with #'b', 'g' and 'r' to paint each point according to its class ... fig=p.figure() ax = p3.Axes3D(fig) ax.scatter(data[:,0], data[:,2], data[:,3], c=colors) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') fig.add_axes(ax) p.show()
I'd like a solution that lets me do it during execution time but as long as I can rotate it and it's short/quick I'm fine with it.
Here's a comparison of the plots produced after applying a PCA to the iris dataset:
1. mayavi
2. matplotlib
Mayavi makes it easier to visualize the data, but MatPlotLib looks more professional. Matplotlib is also lighter.
1.2 Rotating the 3D Plot & Key Shortcuts. Click on the 3D plot window and drag the mouse on the plot. This should rotate the surface in the direction you move the mouse about the focus point (the origin, by default).
Well, first you need to define what you mean by "see my data better"...
You can rotate and zoom in on the plot using the mouse, if you're wanting to work interactively.
If you're just wanting to rotate the axes programatically, then use ax.view_init(elev, azim)
where elev
and azim
are the elevation and azimuth angles (in degrees) that you want to view your plot from.
Alternatively, you can use the ax.elev
, ax.azim
, and ax.dist
properties to get/set the elevation, azimuth, and distance of the current view point.
Borrowing the source from this example:
import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt def randrange(n, vmin, vmax): return (vmax-vmin)*np.random.rand(n) + vmin fig = plt.figure() ax = fig.add_subplot(111, projection='3d') n = 100 for c, m, zl, zh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]: xs = randrange(n, 23, 32) ys = randrange(n, 0, 100) zs = randrange(n, zl, zh) ax.scatter(xs, ys, zs, c=c, marker=m) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show()
We get a nice scatterplot:
You can rotate the axes programatically as shown:
import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt def randrange(n, vmin, vmax): return (vmax-vmin)*np.random.rand(n) + vmin fig = plt.figure() ax = fig.add_subplot(111, projection='3d') n = 100 for c, m, zl, zh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]: xs = randrange(n, 23, 32) ys = randrange(n, 0, 100) zs = randrange(n, zl, zh) ax.scatter(xs, ys, zs, c=c, marker=m) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') ax.azim = 200 ax.elev = -45 plt.show()
Hope that helps a bit!
Using mayavi, you can create such a plot with
import enthought.mayavi.mlab as mylab import numpy as np x, y, z, value = np.random.random((4, 40)) mylab.points3d(x, y, z, value) mylab.show()
The GUI allows rotation via clicking-and-dragging, and zooming in/out via right-clicking-and-dragging.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With