I have a sine wave in my canvas that is animated, swaying left and right. What I am trying to achieve is that the start and end points stay fixed. How to achieve that?
Here is the Code Pen
function start() {
var canvas = document.getElementById("canvas");
var context = canvas.getContext("2d");
context.clearRect(0, 0, canvas.width, canvas.height);
drawCurves(context, step);
step += 5;
window.requestAnimationFrame(start);
}
var step = -4;
function drawCurves(ctx, step) {
var width = ctx.canvas.width;
var height = ctx.canvas.height;
ctx.beginPath();
ctx.lineWidth = 2;
ctx.strokeStyle = "rgb(66,44,255)";
var x = 4;
var y = 0;
var amplitude = 20;
var frequency = 90;
while (y < height) {
x = width / 2 + amplitude * Math.sin((y + step) / frequency);
ctx.lineTo(x, y);
y++;
}
ctx.stroke();
}
canvas {
background-color: wheat;
}
<!DOCTYPE html>
<html>
<head>
</head>
<body onload="start()">
<canvas id="canvas" width="500" height="2000"></canvas>
</body>
</html>
The general formula for a good sine function is y=Asin(2πfx+B), where A is the amplitude, f is the frequency, and B is the phase.
The sine wave will start at the center (zero degrees) and move in the positive direction.
A sine wave is a geometric waveform that oscillates (moves up, down, or side-to-side) periodically, and is defined by the function y = sin x. In other words, it is an s-shaped, smooth wave that oscillates above and below zero.
I've changed the size of your canvas because I wanted to be able to see it. You can change it back to what you need.
I've done 2 things:
The frequency has to be var frequency = height / (2 * Math.PI);
or var frequency = height / (4 * Math.PI);
. The divider has to be a multiple of 2 * Math.PI
I translate the context the opposite direction the same amount: ctx.translate(-amplitude * Math.sin(step / frequency), 0);
If you need a more subtile oscillation play with the amplitude.
In my code there is a commented out ctx.closePath()
Please uncomment this line to see clearly that the sine-wave stay fixed in the center. I hope this is what you were asking.
var canvas = document.getElementById("canvas");
var context = canvas.getContext("2d");
function start() {
context.clearRect(0, 0, canvas.width, canvas.height);
drawCurves(context, step);
step += 5;
window.requestAnimationFrame(start);
}
var step = -4;
function drawCurves(ctx, step) {
var width = ctx.canvas.width;
var height = ctx.canvas.height;
ctx.beginPath();
ctx.lineWidth = 2;
ctx.strokeStyle = "rgb(66,44,255)";
var x = 0;
var y = 0;
var amplitude = 10;
var frequency = height / (2 * Math.PI);
ctx.save();
ctx.translate(-amplitude * Math.sin(step / frequency), 0);
while (y < height) {
x = width / 2 + amplitude * Math.sin((y + step) / frequency);
ctx.lineTo(x, y);
y++;
}
//ctx.closePath();
ctx.stroke();
ctx.restore();
}
start();
canvas {
background-color: wheat;
}
div {
width: 100px;
height: 400px;
border: solid;
}
<div class="box">
<canvas id="canvas" width="100" height="400"></canvas>
</div>
In the case you need to use several curves you can do it like this:
I'm putting all the functionality for drawing the wave in a function drawWave
that takes the amplitude and the trigonometric function to be used (sin or cos) as arguments:
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");
var width = ctx.canvas.width;
var height = ctx.canvas.height;
var step = -4;
function start() {
window.requestAnimationFrame(start);
ctx.clearRect(0, 0, canvas.width, canvas.height);
drawWave(10,"sin");
drawWave(10,"cos");
drawWave(5,"sin");
step += 5;
}
function drawWave(amplitude,trig){
// trig is the trigonometric function to be used: sin or cos
ctx.beginPath();
ctx.lineWidth = 2;
ctx.strokeStyle = "rgb(66,44,255)";
var x = 0;
var y = 0;
//var amplitude = 10;
var frequency = height / (2 * Math.PI);
ctx.save();
ctx.translate(-amplitude * Math[trig](step / frequency), 0);
while (y < height) {
x = width / 2 + amplitude * Math[trig]((y + step) / frequency);
ctx.lineTo(x, y);
y++;
}
ctx.stroke();
ctx.restore();
}
start();
canvas {
background-color: wheat;
}
div {
width: 100px;
height: 400px;
border: solid;
}
<div class="box">
<canvas id="canvas" width="100" height="400"></canvas>
</div>
GLSL version
Because uv-coordinates in this fragment shader varies from 0 to 1 it is very simple to reach the goal, you only need wave frequency divisable by pi.
let gl = canvas.getContext('webgl');
gl.bindBuffer(gl.ARRAY_BUFFER, gl.createBuffer());
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([-1, 3, -1, -1, 3, -1]), gl.STATIC_DRAW);
let pid = gl.createProgram();
shader(`attribute vec2 v;void main(void){gl_Position=vec4(v.xy,0.,1.);}`,gl.VERTEX_SHADER);
shader(document.querySelector(`script[type="glsl"]`).textContent,gl.FRAGMENT_SHADER);
gl.linkProgram(pid);
gl.useProgram(pid);
let v = gl.getAttribLocation(pid, "v");
gl.vertexAttribPointer(v, 2, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(v);
let resolution = gl.getUniformLocation(pid, 'resolution');
let time = gl.getUniformLocation(pid, 'time');
requestAnimationFrame(draw);
function draw(t) {
gl.viewport(0, 0, gl.drawingBufferWidth, gl.drawingBufferHeight);
gl.clearColor(0, 0, 0, 0);
gl.uniform1f(time, t/500);
gl.uniform2f(resolution, gl.drawingBufferWidth, gl.drawingBufferHeight);
gl.drawArrays(gl.TRIANGLES, 0, 3);
requestAnimationFrame(draw);
}
function shader(src, type) {
let sid = gl.createShader(type);
gl.shaderSource(sid, src);
gl.compileShader(sid);
gl.attachShader(pid, sid);
}
<canvas width="200" height="600" id="canvas"/>
<script type="glsl">
precision highp float;
uniform float time;
uniform vec2 resolution;
void main(void) {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec2 p = 20.*uv - 10.;
vec3 f = vec3(0.);
f+=pow(abs(p.x+5.*sin(time*2.)*sin(uv.y*6.28*2.)+cos(uv.y*11.)),-0.8)*vec3(.5,.0,.5);
f+=pow(abs(p.x+4.*sin(time*3.)*sin(uv.y*6.28*.5)+cos(uv.y*21.)),-0.8)*vec3(.5,.5,.0);
f+=pow(abs(p.x+3.*sin(time*5.)*sin(uv.y*6.28*1.)+cos(uv.y*17.)),-0.8)*vec3(.0,.5,.5);
gl_FragColor = vec4(f, 1.);
}
</script>
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With