I stumbled across this during my experiments with C++11. I find that it is an obvious solution, but I haven't been able to find any other examples of it in the wild, so I'm concerned that there's something I'm missing.
The practice I'm referring to (in the "addAsync" function):
#include <thread>
#include <future>
#include <iostream>
#include <chrono>
int addTwoNumbers(int a, int b) {
std::cout << "Thread ID: " << std::this_thread::get_id() << std::endl;
return a + b;
}
void printNum(std::future<int> future) {
std::cout << future.get() << std::endl;
}
void addAsync(int a, int b, auto callback(std::future<int>) -> void) { //<- the notation in question
auto res = std::async(std::launch::async, addTwoNumbers, a, b);
if (callback) //super straightforward nullptr handling
return callback(std::move(res));
}
int main(int argc, char** argv) {
addAsync(10, 10, [](std::future<int> number) { //lambda functions work great
addAsync(number.get(), 20, [](std::future<int> number) {
addAsync(893, 4387, printNum); //as do standard functions
addAsync(2342, 342, nullptr); //executes, sans callback
std::cout << number.get() << std::endl;
});
});
std::cout << "main thread: " << std::this_thread::get_id() << std::endl;
return 0;
}
Is it considered bad practice, or is it non-portable (I've only tried it in MSVC++ 2015)? Also, how does the compiler treat this; by conversion to std::function?
I would love to keep using this in my projects, as it obviously states the required argument types and return type in the "signature", accepts a nullptr for optionality, and seems to "just work" (I am aware that these are famous last words in C++).
auto callback(std::future<int>) -> void
is the declaration of a entity of type void(std::future<int>)
called callback
. When listed as an argument, the compiler adjusts this to be a pointer-to-function of type void(*)(std::future<int>)
.
Your lambda is stateless, and as such can be implicitly converted to a function pointer.
Once you add a non-trivial capture, your code will stop compiling:
[argc](std::future<int> number) {
std::cout << argc << '\n';
...
Now, ignoring your question content and looking at the title...
There is a modest cost for a std::function
because it is a value-type, not a view-type. As a value-type, it actually copies its argument.
You can get around this by wrapping the calling object in a std::ref
, but if you want to state "I won't keep this function object around longer than this call", you can write a function_view
type as follows:
template<class Sig>
struct function_view;
template<class R, class...Args>
struct function_view<R(Args...)> {
void* ptr = nullptr;
R(*pf)(void*, Args...) = nullptr;
template<class F>
using pF = decltype(std::addressof( std::declval<F&>() ));
template<class F>
void bind_to( F& f ) {
ptr = (void*)std::addressof(f);
pf = [](void* ptr, Args... args)->R{
return (*(pF<F>)ptr)(std::forward<Args>(args)...);
};
}
// when binding to a function pointer
// even a not identical one, check for
// null. In addition, we can remove a
// layer of indirection and store the function
// pointer directly in the `void*`.
template<class R_in, class...Args_in>
void bind_to( R_in(*f)(Args_in...) ) {
using F = decltype(f);
if (!f) return bind_to(nullptr);
ptr = (void*)f;
pf = [](void* ptr, Args... args)->R{
return (F(ptr))(std::forward<Args>(args)...);
};
}
// binding to nothing:
void bind_to( std::nullptr_t ) {
ptr = nullptr;
pf = nullptr;
}
explicit operator bool()const{return pf;}
function_view()=default;
function_view(function_view const&)=default;
function_view& operator=(function_view const&)=default;
template<class F,
std::enable_if_t< !std::is_same<function_view, std::decay_t<F>>{}, int > =0,
std::enable_if_t< std::is_convertible< std::result_of_t< F&(Args...) >, R >{}, int> = 0
>
function_view( F&& f ) {
bind_to(f); // not forward
}
function_view( std::nullptr_t ) {}
R operator()(Args...args) const {
return pf(ptr, std::forward<Args>(args)...);
}
};
live example.
This is also useful in that it is a strictly simpler kind of type erasure than std::function
, so it could be educational to go over it.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With