Having trouble coloring binned values in the following histogram. I intend on coloring all bars that are less-than 50 on the x-axis (Creditworthiness). How is this done in Altair?
base = alt.Chart(X_train)
histogram = base.mark_bar().encode(
alt.X('Creditworthiness', bin=True),
y='count()',
color=alt.condition(
alt.datum.Creditworthiness < 50,
alt.value("steelblue"), # The positive color
alt.value("orange") # The negative color
)
)
threshold_line = pd.DataFrame([{"threshold": max_profit_threshold}])
mark = alt.Chart(threshold_line).mark_rule(color="#e45755").encode(
x='threshold:Q',
size=alt.value(2)
)
histogram + mark
There are two ways to do this; the quick way which is undocumented and may not work in the future, and the more robust way that is a bit more code.
The quick way relies on using the internal field names generated by vega for binned encodings:
import altair as alt
import pandas as pd
import numpy as np
np.random.seed(1701)
X_train = pd.DataFrame({
'Creditworthiness': np.clip(50 + 20 * np.random.randn(300), 0, 100)
})
alt.Chart(X_train).mark_bar().encode(
alt.X('Creditworthiness', bin=True),
y='count()',
color=alt.condition(
alt.datum.bin_maxbins_10_Creditworthiness_end <= 50,
alt.value("steelblue"), # The positive color
alt.value("orange") # The negative color
)
)
The documented way is to move your binning from the encoding to an explicit transform, which is a bit more verbose:
alt.Chart(X_train).transform_bin(
'Creditworthiness_bin', 'Creditworthiness', bin=alt.Bin(step=10)
).transform_joinaggregate(
count='count()', groupby=['Creditworthiness_bin']
).mark_bar(orient='vertical').encode(
alt.X('Creditworthiness_bin:Q', bin='binned'),
alt.X2('Creditworthiness_bin_end'),
alt.Y('count:Q'),
color=alt.condition(
alt.datum.Creditworthiness_bin_end <= 50,
alt.value("steelblue"), # The positive color
alt.value("orange") # The negative color
)
)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With