I'm trying to use the internal flash of an STM32F405 to store a bunch of user settable bytes that remain after rebooting.
I'm using:
uint8_t userConfig[64] __attribute__((at(0x0800C000)));
to allocate memory for the data I want to store.
When the program starts, I check to see if the first byte is set to 0x42
, if not, i set it using:
HAL_FLASH_Unlock();
HAL_FLASH_Program(TYPEPROGRAM_BYTE, &userConfig[0], 0x42);
HAL_FLASH_Lock();
After that I check the value in userConfig[0]
and I see 0x42
... Great!
When I hit reset, however, and look at the location again, it's not 0x42
anymore...
Any idea where I'm going wrong? I've also tried:
#pragma location = 0x0800C00
volatile const uint8_t userConfig[64]
but I get the same result..
The STM32L4 embeds up to 1 Mbyte of dual-bank Flash memory. The Flash memory interface manages all memory access (read, programming and erasing) as well as memory protection and option bytes. Applications using this Flash interface benefit from its high performance together with low-power access.
Okay I found an answer on the ST forums thanks to clive1
. This example works for an STM32F405xG.
First we need to modify the memory layout in the linker script file (.ld file)
Modify the existing FLASH and add a new line for DATA. Here I've allocated all of section 11
.
MEMORY
{
FLASH (RX) : ORIGIN = 0x08000000, LENGTH = 1M-128K
DATA (RWX) : ORIGIN = 0x080E0000, LENGTH = 128k
...
...
}
Manual for editing linker files on the sourceware website
In the same file, we need to add:
.user_data :
{
. = ALIGN(4);
*(.user_data)
. = ALIGN(4);
} > DATA
This creates a section
called .user_data
that we can address in the program code.
Finally, in your .c file add:
__attribute__((__section__(".user_data"))) const uint8_t userConfig[64]
This specifies that we wish to store the userConfig
variable in the .user_data
section and const
makes sure the address of userConfig
is kept static.
Now, to write to this area of flash during runtime, you can use the stm32f4 stdlib or HAL flash driver.
Before you can write to the flash, it has to be erased (all bytes set to 0xFF) The instructions for the HAL library say nothing about doing this for some reason...
HAL_FLASH_Unlock();
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP | FLASH_FLAG_OPERR | FLASH_FLAG_WRPERR | FLASH_FLAG_PGAERR | FLASH_FLAG_PGSERR );
FLASH_Erase_Sector(FLASH_SECTOR_11, VOLTAGE_RANGE_3);
HAL_FLASH_Program(TYPEPROGRAM_WORD, &userConfig[index], someData);
HAL_FLASH_Lock();
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With