Is there an easy way to make a function to inverse an algorithm for example like this:
>>> value = inverse("y = 2*x+3")
>>> print(value)
"x = (y-3)/2"
If you can't make actual code for the function, please recommend me tools that would make this task easier. The function would be only used to inverse algorithms with +, -, * and /
You should try SymPy for doing that:
from sympy import solve
from sympy.abc import x, y
e = 2*x+3-y
solve(e,x)
#[y/2 - 3/2]
solve(e,y)
#[2*x + 3]
Based on this, you can build your inverse()
like (works for two variables):
def inverse(string, left_string=None):
from sympy import solve, Symbol, sympify
string = '-' + string
e = sympify(string.replace('=','+'))
if left_string:
ans = left_string + ' = ' + str(solve(e, sympify(left_string))[0])
else:
left = sympify(string.split('=')[0].strip().replace('-',''))
symbols = e.free_symbols
symbols.remove( left )
right = list(symbols)[0]
ans = str(right) + ' = ' + str(solve(e, right)[0])
return ans
Examples:
inverse(' x = 4*y/2')
#'y = x/2'
inverse(' y = 100/x + x**2')
#'x = -y/(3*(sqrt(-y**3/27 + 2500) + 50)**(1/3)) - (sqrt(-y**3/27 + 2500) + 50)**(1/3)'
inverse("screeny = (isox+isoy)*29/2.0344827586206895", "isoy")
#'isoy = -isox + 0.0701545778834721*screeny'
This is a little long for a comment, but here's the sort of thing I had in mind:
import sympy
def inverse(s):
terms = [sympy.sympify(term) for term in s.split("=")]
eqn = sympy.Eq(*terms)
var_to_solve_for = min(terms[1].free_symbols)
solns = sympy.solve(eqn, var_to_solve_for)
output_eqs = [sympy.Eq(var_to_solve_for, soln) for soln in solns]
return output_eqs
After which we have
>>> inverse("y = 2*x+3")
[x == y/2 - 3/2]
>>> inverse("x = 100/z + z**2")
[z == -x/(3*(sqrt(-x**3/27 + 2500) + 50)**(1/3)) - (sqrt(-x**3/27 + 2500) + 50)**(1/3), z == -x/(3*(-1/2 - sqrt(3)*I/2)*(sqrt(-x**3/27 + 2500) + 50)**(1/3)) - (-1/2 - sqrt(3)*I/2)*(sqrt(-x**3/27 + 2500) + 50)**(1/3),
z == -x/(3*(-1/2 + sqrt(3)*I/2)*(sqrt(-x**3/27 + 2500) + 50)**(1/3)) - (-1/2 + sqrt(3)*I/2)*(sqrt(-x**3/27 + 2500) + 50)**(1/3)]
etc.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With