I want to write a code in python to solve a sudoku puzzle. Do you guys have any idea about a good algorithm for this purpose. I read somewhere in net about a algorithm which solves it by filling the whole box with all possible numbers, then inserts known values into the corresponding boxes.From the row and coloumn of known values the known value is removed.If you guys know any better algorithm than this please help me to write one. Also I am confused that how i should read the known values from the user. It is really hard to enter the values one by one through console. Any easy way for this other than using gui?
The AlgorithmOne algorithm to solve Sudoku puzzles is the backtracking algorithm. Essentially, you keep trying numbers in empty spots until there aren't any that are possible, then you backtrack and try different numbers in the previous slots.
Since the backtracking algorithm is so efficient as well as easy to implement, we consider finding such a solution unnecessary. The conclusion we have reached is that the backtracking algorithm is the best method for computationally solving sudoku with the Java programming language.
There are more than a few techniques to solve a Sudoku puzzle, but per Conceptis Puzzles, the easiest way to a Sudoku solution is to, “Scan rows and columns within each triple-box area, eliminating numbers or squares and finding situations where only a single number can fit into a single square.” If you're looking to ...
Here is my sudoku solver in python. It uses simple backtracking algorithm to solve the puzzle. For simplicity no input validations or fancy output is done. It's the bare minimum code which solves the problem.
It takes 9X9 grid partially filled with numbers. A cell with value 0 indicates that it is not filled.
def findNextCellToFill(grid, i, j): for x in range(i,9): for y in range(j,9): if grid[x][y] == 0: return x,y for x in range(0,9): for y in range(0,9): if grid[x][y] == 0: return x,y return -1,-1 def isValid(grid, i, j, e): rowOk = all([e != grid[i][x] for x in range(9)]) if rowOk: columnOk = all([e != grid[x][j] for x in range(9)]) if columnOk: # finding the top left x,y co-ordinates of the section containing the i,j cell secTopX, secTopY = 3 *(i//3), 3 *(j//3) #floored quotient should be used here. for x in range(secTopX, secTopX+3): for y in range(secTopY, secTopY+3): if grid[x][y] == e: return False return True return False def solveSudoku(grid, i=0, j=0): i,j = findNextCellToFill(grid, i, j) if i == -1: return True for e in range(1,10): if isValid(grid,i,j,e): grid[i][j] = e if solveSudoku(grid, i, j): return True # Undo the current cell for backtracking grid[i][j] = 0 return False
>>> input = [[5,1,7,6,0,0,0,3,4],[2,8,9,0,0,4,0,0,0],[3,4,6,2,0,5,0,9,0],[6,0,2,0,0,0,0,1,0],[0,3,8,0,0,6,0,4,7],[0,0,0,0,0,0,0,0,0],[0,9,0,0,0,0,0,7,8],[7,0,3,4,0,0,5,6,0],[0,0,0,0,0,0,0,0,0]] >>> solveSudoku(input) True >>> input [[5, 1, 7, 6, 9, 8, 2, 3, 4], [2, 8, 9, 1, 3, 4, 7, 5, 6], [3, 4, 6, 2, 7, 5, 8, 9, 1], [6, 7, 2, 8, 4, 9, 3, 1, 5], [1, 3, 8, 5, 2, 6, 9, 4, 7], [9, 5, 4, 7, 1, 3, 6, 8, 2], [4, 9, 5, 3, 6, 2, 1, 7, 8], [7, 2, 3, 4, 8, 1, 5, 6, 9], [8, 6, 1, 9, 5, 7, 4, 2, 3]]
The above one is very basic backtracking algorithm which is explained at many places. But the most interesting and natural of the sudoku solving strategies I came across is this one from here
I also wrote a Sudoku solver in Python. It is a backtracking algorithm too, but I wanted to share my implementation as well.
Backtracking can be fast enough given that it is moving within the constraints and is choosing cells wisely. You might also want to check out my answer in this thread about optimizing the algorithm. But here I will focus on the algorithm and code itself.
The gist of the algorithm is to start iterating the grid and making decisions what to do - populate a cell, or try another digit for the same cell, or blank out a cell and move back to the previous cell, etc. It's important to note that there is no deterministic way to know how many steps or iterations you will need to solve the puzzle. Therefore, you really have two options - to use a while loop or to use recursion. Both of them can continue iterating until a solution is found or until a lack of solution is proven. The advantage of the recursion is that it is capable of branching out and generally supports more complex logics and algorithms, but the disadvantage is that it is more difficult to implement and often tricky to debug. For my implementation of the backtracking I have used a while loop because no branching is needed, the algorithm searches in a single-threaded linear fashion.
The logic goes like this:
While True: (main iterations)
While True: (backtrack iterations)
Some features of the algorithm:
it keeps a record of the visited cells in the same order so that it can backtrack at any time
it keeps a record of choices for each cell so that it doesn't try the same digit for the same cell twice
the available choices for a cell are always within the Sudoku constraints (row, column and 3x3 quadrant)
this particular implementation has a few different methods of choosing the next cell and the next digit depending on input parameters (more info in the optimization thread)
if given a blank grid, then it will generate a valid Sudoku puzzle (use with optimization parameter "C" in order to generate random grid every time)
if given a solved grid it will recognize it and print a message
The full code is:
import random, math, time class Sudoku: def __init__( self, _g=[] ): self._input_grid = [] # store a copy of the original input grid for later use self.grid = [] # this is the main grid that will be iterated for i in _g: # copy the nested lists by value, otherwise Python keeps the reference for the nested lists self._input_grid.append( i[:] ) self.grid.append( i[:] ) self.empty_cells = set() # set of all currently empty cells (by index number from left to right, top to bottom) self.empty_cells_initial = set() # this will be used to compare against the current set of empty cells in order to determine if all cells have been iterated self.current_cell = None # used for iterating self.current_choice = 0 # used for iterating self.history = [] # list of visited cells for backtracking self.choices = {} # dictionary of sets of currently available digits for each cell self.nextCellWeights = {} # a dictionary that contains weights for all cells, used when making a choice of next cell self.nextCellWeights_1 = lambda x: None # the first function that will be called to assign weights self.nextCellWeights_2 = lambda x: None # the second function that will be called to assign weights self.nextChoiceWeights = {} # a dictionary that contains weights for all choices, used when selecting the next choice self.nextChoiceWeights_1 = lambda x: None # the first function that will be called to assign weights self.nextChoiceWeights_2 = lambda x: None # the second function that will be called to assign weights self.search_space = 1 # the number of possible combinations among the empty cells only, for information purpose only self.iterations = 0 # number of main iterations, for information purpose only self.iterations_backtrack = 0 # number of backtrack iterations, for information purpose only self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 } # store the number of times each digit is used in order to choose the ones that are least/most used, parameter "3" and "4" self.centerWeights = {} # a dictionary of the distances for each cell from the center of the grid, calculated only once at the beginning # populate centerWeights by using Pythagorean theorem for id in range( 81 ): row = id // 9 col = id % 9 self.centerWeights[ id ] = int( round( 100 * math.sqrt( (row-4)**2 + (col-4)**2 ) ) ) # for debugging purposes def dump( self, _custom_text, _file_object ): _custom_text += ", cell: {}, choice: {}, choices: {}, empty: {}, history: {}, grid: {}\n".format( self.current_cell, self.current_choice, self.choices, self.empty_cells, self.history, self.grid ) _file_object.write( _custom_text ) # to be called before each solve of the grid def reset( self ): self.grid = [] for i in self._input_grid: self.grid.append( i[:] ) self.empty_cells = set() self.empty_cells_initial = set() self.current_cell = None self.current_choice = 0 self.history = [] self.choices = {} self.nextCellWeights = {} self.nextCellWeights_1 = lambda x: None self.nextCellWeights_2 = lambda x: None self.nextChoiceWeights = {} self.nextChoiceWeights_1 = lambda x: None self.nextChoiceWeights_2 = lambda x: None self.search_space = 1 self.iterations = 0 self.iterations_backtrack = 0 self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 } def validate( self ): # validate all rows for x in range(9): digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 } for y in range(9): digit_count[ self.grid[ x ][ y ] ] += 1 for i in digit_count: if digit_count[ i ] != 1: return False # validate all columns for x in range(9): digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 } for y in range(9): digit_count[ self.grid[ y ][ x ] ] += 1 for i in digit_count: if digit_count[ i ] != 1: return False # validate all 3x3 quadrants def validate_quadrant( _grid, from_row, to_row, from_col, to_col ): digit_count = { 0:1, 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 } for x in range( from_row, to_row + 1 ): for y in range( from_col, to_col + 1 ): digit_count[ _grid[ x ][ y ] ] += 1 for i in digit_count: if digit_count[ i ] != 1: return False return True for x in range( 0, 7, 3 ): for y in range( 0, 7, 3 ): if not validate_quadrant( self.grid, x, x+2, y, y+2 ): return False return True def setCell( self, _id, _value ): row = _id // 9 col = _id % 9 self.grid[ row ][ col ] = _value def getCell( self, _id ): row = _id // 9 col = _id % 9 return self.grid[ row ][ col ] # returns a set of IDs of all blank cells that are related to the given one, related means from the same row, column or quadrant def getRelatedBlankCells( self, _id ): result = set() row = _id // 9 col = _id % 9 for i in range( 9 ): if self.grid[ row ][ i ] == 0: result.add( row * 9 + i ) for i in range( 9 ): if self.grid[ i ][ col ] == 0: result.add( i * 9 + col ) for x in range( (row//3)*3, (row//3)*3 + 3 ): for y in range( (col//3)*3, (col//3)*3 + 3 ): if self.grid[ x ][ y ] == 0: result.add( x * 9 + y ) return set( result ) # return by value # get the next cell to iterate def getNextCell( self ): self.nextCellWeights = {} for id in self.empty_cells: self.nextCellWeights[ id ] = 0 self.nextCellWeights_1( 1000 ) # these two functions will always be called, but behind them will be a different weight function depending on the optimization parameters provided self.nextCellWeights_2( 1 ) return min( self.nextCellWeights, key = self.nextCellWeights.get ) def nextCellWeights_A( self, _factor ): # the first cell from left to right, from top to bottom for id in self.nextCellWeights: self.nextCellWeights[ id ] += id * _factor def nextCellWeights_B( self, _factor ): # the first cell from right to left, from bottom to top self.nextCellWeights_A( _factor * -1 ) def nextCellWeights_C( self, _factor ): # a randomly chosen cell for id in self.nextCellWeights: self.nextCellWeights[ id ] += random.randint( 0, 999 ) * _factor def nextCellWeights_D( self, _factor ): # the closest cell to the center of the grid for id in self.nextCellWeights: self.nextCellWeights[ id ] += self.centerWeights[ id ] * _factor def nextCellWeights_E( self, _factor ): # the cell that currently has the fewest choices available for id in self.nextCellWeights: self.nextCellWeights[ id ] += len( self.getChoices( id ) ) * _factor def nextCellWeights_F( self, _factor ): # the cell that currently has the most choices available self.nextCellWeights_E( _factor * -1 ) def nextCellWeights_G( self, _factor ): # the cell that has the fewest blank related cells for id in self.nextCellWeights: self.nextCellWeights[ id ] += len( self.getRelatedBlankCells( id ) ) * _factor def nextCellWeights_H( self, _factor ): # the cell that has the most blank related cells self.nextCellWeights_G( _factor * -1 ) def nextCellWeights_I( self, _factor ): # the cell that is closest to all filled cells for id in self.nextCellWeights: weight = 0 for check in range( 81 ): if self.getCell( check ) != 0: weight += math.sqrt( ( id//9 - check//9 )**2 + ( id%9 - check%9 )**2 ) def nextCellWeights_J( self, _factor ): # the cell that is furthest from all filled cells self.nextCellWeights_I( _factor * -1 ) def nextCellWeights_K( self, _factor ): # the cell whose related blank cells have the fewest available choices for id in self.nextCellWeights: weight = 0 for id_blank in self.getRelatedBlankCells( id ): weight += len( self.getChoices( id_blank ) ) self.nextCellWeights[ id ] += weight * _factor def nextCellWeights_L( self, _factor ): # the cell whose related blank cells have the most available choices self.nextCellWeights_K( _factor * -1 ) # for a given cell return a set of possible digits within the Sudoku restrictions def getChoices( self, _id ): available_choices = {1,2,3,4,5,6,7,8,9} row = _id // 9 col = _id % 9 # exclude digits from the same row for y in range( 0, 9 ): if self.grid[ row ][ y ] in available_choices: available_choices.remove( self.grid[ row ][ y ] ) # exclude digits from the same column for x in range( 0, 9 ): if self.grid[ x ][ col ] in available_choices: available_choices.remove( self.grid[ x ][ col ] ) # exclude digits from the same quadrant for x in range( (row//3)*3, (row//3)*3 + 3 ): for y in range( (col//3)*3, (col//3)*3 + 3 ): if self.grid[ x ][ y ] in available_choices: available_choices.remove( self.grid[ x ][ y ] ) if len( available_choices ) == 0: return set() else: return set( available_choices ) # return by value def nextChoice( self ): self.nextChoiceWeights = {} for i in self.choices[ self.current_cell ]: self.nextChoiceWeights[ i ] = 0 self.nextChoiceWeights_1( 1000 ) self.nextChoiceWeights_2( 1 ) self.current_choice = min( self.nextChoiceWeights, key = self.nextChoiceWeights.get ) self.setCell( self.current_cell, self.current_choice ) self.choices[ self.current_cell ].remove( self.current_choice ) def nextChoiceWeights_0( self, _factor ): # the lowest digit for i in self.nextChoiceWeights: self.nextChoiceWeights[ i ] += i * _factor def nextChoiceWeights_1( self, _factor ): # the highest digit self.nextChoiceWeights_0( _factor * -1 ) def nextChoiceWeights_2( self, _factor ): # a randomly chosen digit for i in self.nextChoiceWeights: self.nextChoiceWeights[ i ] += random.randint( 0, 999 ) * _factor def nextChoiceWeights_3( self, _factor ): # heuristically, the least used digit across the board self.digit_heuristic = { 1:0, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0 } for id in range( 81 ): if self.getCell( id ) != 0: self.digit_heuristic[ self.getCell( id ) ] += 1 for i in self.nextChoiceWeights: self.nextChoiceWeights[ i ] += self.digit_heuristic[ i ] * _factor def nextChoiceWeights_4( self, _factor ): # heuristically, the most used digit across the board self.nextChoiceWeights_3( _factor * -1 ) def nextChoiceWeights_5( self, _factor ): # the digit that will cause related blank cells to have the least number of choices available cell_choices = {} for id in self.getRelatedBlankCells( self.current_cell ): cell_choices[ id ] = self.getChoices( id ) for c in self.nextChoiceWeights: weight = 0 for id in cell_choices: weight += len( cell_choices[ id ] ) if c in cell_choices[ id ]: weight -= 1 self.nextChoiceWeights[ c ] += weight * _factor def nextChoiceWeights_6( self, _factor ): # the digit that will cause related blank cells to have the most number of choices available self.nextChoiceWeights_5( _factor * -1 ) def nextChoiceWeights_7( self, _factor ): # the digit that is the least common available choice among related blank cells cell_choices = {} for id in self.getRelatedBlankCells( self.current_cell ): cell_choices[ id ] = self.getChoices( id ) for c in self.nextChoiceWeights: weight = 0 for id in cell_choices: if c in cell_choices[ id ]: weight += 1 self.nextChoiceWeights[ c ] += weight * _factor def nextChoiceWeights_8( self, _factor ): # the digit that is the most common available choice among related blank cells self.nextChoiceWeights_7( _factor * -1 ) def nextChoiceWeights_9( self, _factor ): # the digit that is the least common available choice across the board cell_choices = {} for id in range( 81 ): if self.getCell( id ) == 0: cell_choices[ id ] = self.getChoices( id ) for c in self.nextChoiceWeights: weight = 0 for id in cell_choices: if c in cell_choices[ id ]: weight += 1 self.nextChoiceWeights[ c ] += weight * _factor def nextChoiceWeights_a( self, _factor ): # the digit that is the most common available choice across the board self.nextChoiceWeights_9( _factor * -1 ) # the main function to be called def solve( self, _nextCellMethod, _nextChoiceMethod, _start_time, _prefillSingleChoiceCells = False ): s = self s.reset() # initialize optimization functions based on the optimization parameters provided """ A - the first cell from left to right, from top to bottom B - the first cell from right to left, from bottom to top C - a randomly chosen cell D - the closest cell to the center of the grid E - the cell that currently has the fewest choices available F - the cell that currently has the most choices available G - the cell that has the fewest blank related cells H - the cell that has the most blank related cells I - the cell that is closest to all filled cells J - the cell that is furthest from all filled cells K - the cell whose related blank cells have the fewest available choices L - the cell whose related blank cells have the most available choices """ if _nextCellMethod[ 0 ] in "ABCDEFGHIJKLMN": s.nextCellWeights_1 = getattr( s, "nextCellWeights_" + _nextCellMethod[0] ) elif _nextCellMethod[ 0 ] == " ": s.nextCellWeights_1 = lambda x: None else: print( "(A) Incorrect optimization parameters provided" ) return False if len( _nextCellMethod ) > 1: if _nextCellMethod[ 1 ] in "ABCDEFGHIJKLMN": s.nextCellWeights_2 = getattr( s, "nextCellWeights_" + _nextCellMethod[1] ) elif _nextCellMethod[ 1 ] == " ": s.nextCellWeights_2 = lambda x: None else: print( "(B) Incorrect optimization parameters provided" ) return False else: s.nextCellWeights_2 = lambda x: None # initialize optimization functions based on the optimization parameters provided """ 0 - the lowest digit 1 - the highest digit 2 - a randomly chosen digit 3 - heuristically, the least used digit across the board 4 - heuristically, the most used digit across the board 5 - the digit that will cause related blank cells to have the least number of choices available 6 - the digit that will cause related blank cells to have the most number of choices available 7 - the digit that is the least common available choice among related blank cells 8 - the digit that is the most common available choice among related blank cells 9 - the digit that is the least common available choice across the board a - the digit that is the most common available choice across the board """ if _nextChoiceMethod[ 0 ] in "0123456789a": s.nextChoiceWeights_1 = getattr( s, "nextChoiceWeights_" + _nextChoiceMethod[0] ) elif _nextChoiceMethod[ 0 ] == " ": s.nextChoiceWeights_1 = lambda x: None else: print( "(C) Incorrect optimization parameters provided" ) return False if len( _nextChoiceMethod ) > 1: if _nextChoiceMethod[ 1 ] in "0123456789a": s.nextChoiceWeights_2 = getattr( s, "nextChoiceWeights_" + _nextChoiceMethod[1] ) elif _nextChoiceMethod[ 1 ] == " ": s.nextChoiceWeights_2 = lambda x: None else: print( "(D) Incorrect optimization parameters provided" ) return False else: s.nextChoiceWeights_2 = lambda x: None # fill in all cells that have single choices only, and keep doing it until there are no left, because as soon as one cell is filled this might bring the choices down to 1 for another cell if _prefillSingleChoiceCells == True: while True: next = False for id in range( 81 ): if s.getCell( id ) == 0: cell_choices = s.getChoices( id ) if len( cell_choices ) == 1: c = cell_choices.pop() s.setCell( id, c ) next = True if not next: break # initialize set of empty cells for x in range( 0, 9, 1 ): for y in range( 0, 9, 1 ): if s.grid[ x ][ y ] == 0: s.empty_cells.add( 9*x + y ) s.empty_cells_initial = set( s.empty_cells ) # copy by value # calculate search space for id in s.empty_cells: s.search_space *= len( s.getChoices( id ) ) # initialize the iteration by choosing a first cell if len( s.empty_cells ) < 1: if s.validate(): print( "Sudoku provided is valid!" ) return True else: print( "Sudoku provided is not valid!" ) return False else: s.current_cell = s.getNextCell() s.choices[ s.current_cell ] = s.getChoices( s.current_cell ) if len( s.choices[ s.current_cell ] ) < 1: print( "(C) Sudoku cannot be solved!" ) return False # start iterating the grid while True: #if time.time() - _start_time > 2.5: return False # used when doing mass tests and don't want to wait hours for an inefficient optimization to complete s.iterations += 1 # if all empty cells and all possible digits have been exhausted, then the Sudoku cannot be solved if s.empty_cells == s.empty_cells_initial and len( s.choices[ s.current_cell ] ) < 1: print( "(A) Sudoku cannot be solved!" ) return False # if there are no empty cells, it's time to validate the Sudoku if len( s.empty_cells ) < 1: if s.validate(): print( "Sudoku has been solved! " ) print( "search space is {}".format( self.search_space ) ) print( "empty cells: {}, iterations: {}, backtrack iterations: {}".format( len( self.empty_cells_initial ), self.iterations, self.iterations_backtrack ) ) for i in range(9): print( self.grid[i] ) return True # if there are empty cells, then move to the next one if len( s.empty_cells ) > 0: s.current_cell = s.getNextCell() # get the next cell s.history.append( s.current_cell ) # add the cell to history s.empty_cells.remove( s.current_cell ) # remove the cell from the empty queue s.choices[ s.current_cell ] = s.getChoices( s.current_cell ) # get possible choices for the chosen cell if len( s.choices[ s.current_cell ] ) > 0: # if there is at least one available digit, then choose it and move to the next iteration, otherwise the iteration continues below with a backtrack s.nextChoice() continue # if all empty cells have been iterated or there are no empty cells, and there are still some remaining choices, then try another choice if len( s.choices[ s.current_cell ] ) > 0 and ( s.empty_cells == s.empty_cells_initial or len( s.empty_cells ) < 1 ): s.nextChoice() continue # if none of the above, then we need to backtrack to a cell that was previously iterated # first, restore the current cell... s.history.remove( s.current_cell ) # ...by removing it from history s.empty_cells.add( s.current_cell ) # ...adding back to the empty queue del s.choices[ s.current_cell ] # ...scrapping all choices s.current_choice = 0 s.setCell( s.current_cell, s.current_choice ) # ...and blanking out the cell # ...and then, backtrack to a previous cell while True: s.iterations_backtrack += 1 if len( s.history ) < 1: print( "(B) Sudoku cannot be solved!" ) return False s.current_cell = s.history[ -1 ] # after getting the previous cell, do not recalculate all possible choices because we will lose the information about has been tried so far if len( s.choices[ s.current_cell ] ) < 1: # backtrack until a cell is found that still has at least one unexplored choice... s.history.remove( s.current_cell ) s.empty_cells.add( s.current_cell ) s.current_choice = 0 del s.choices[ s.current_cell ] s.setCell( s.current_cell, s.current_choice ) continue # ...and when such cell is found, iterate it s.nextChoice() break # and break out from the backtrack iteration but will return to the main iteration
Example call using the world's hardest Sudoku as per this article http://www.telegraph.co.uk/news/science/science-news/9359579/Worlds-hardest-sudoku-can-you-crack-it.html
hardest_sudoku = [ [8,0,0,0,0,0,0,0,0], [0,0,3,6,0,0,0,0,0], [0,7,0,0,9,0,2,0,0], [0,5,0,0,0,7,0,0,0], [0,0,0,0,4,5,7,0,0], [0,0,0,1,0,0,0,3,0], [0,0,1,0,0,0,0,6,8], [0,0,8,5,0,0,0,1,0], [0,9,0,0,0,0,4,0,0]] mySudoku = Sudoku( hardest_sudoku ) start = time.time() mySudoku.solve( "A", "0", time.time(), False ) print( "solved in {} seconds".format( time.time() - start ) )
And example output is:
Sudoku has been solved! search space is 9586591201964851200000000000000000000 empty cells: 60, iterations: 49559, backtrack iterations: 49498 [8, 1, 2, 7, 5, 3, 6, 4, 9] [9, 4, 3, 6, 8, 2, 1, 7, 5] [6, 7, 5, 4, 9, 1, 2, 8, 3] [1, 5, 4, 2, 3, 7, 8, 9, 6] [3, 6, 9, 8, 4, 5, 7, 2, 1] [2, 8, 7, 1, 6, 9, 5, 3, 4] [5, 2, 1, 9, 7, 4, 3, 6, 8] [4, 3, 8, 5, 2, 6, 9, 1, 7] [7, 9, 6, 3, 1, 8, 4, 5, 2] solved in 1.1600663661956787 seconds
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With