Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

algorithm for solving resource allocation problems

Tags:

algorithm

Hi I am building a program wherein students are signing up for an exam which is conducted at several cities through out the country. While signing up students provide a list of three cities where they would like to give the exam in order of their preference. So a student may say his first preference for an exam centre is New York followed by Chicago followed by Boston.

Now keeping in mind that as the exam centres have limited capacity they cannot accomodate each students first choice .We would however try and provide as many students either their first or second choice of centres and as far as possible avoid students having to give the third choice centre to a student

Now any ideas of a sorting algorithm that would mke this process more efficent.The simple way to do this would be to first go through the list of first choice of students allot as many as possible then go through the list of second choices and allot. However this may lead to the students who are first in the list getting their first centre and the last students getting their third choice or worse none of their choices. Anything that could make this more efficient

like image 592
user992010 Avatar asked Nov 13 '11 14:11

user992010


2 Answers

Sounds like a variant of the classic stable marriages problem or the college admission problem. The Wikipedia lists a linear-time (in the number of preferences, O(n²) in the number of persons) algorithm for the former; the NRMP describes an efficient algorithm for the latter.

I suspect that if you randomly generate preferences of exam places for students (one Fisher–Yates shuffle per exam place) and then apply the stable marriages algorithm, you'll get a pretty fair and efficient solution.

like image 131
Fred Foo Avatar answered Nov 14 '22 05:11

Fred Foo


This problem could be formulated as an instance of minimum cost flow. Let N be the number of students. Let each student be a source vertex with capacity 1. Let each exam center be a sink vertex with capacity, well, its capacity. Make an arc from each student to his first, second, and third choices. Set the cost of first choice arcs to 0; the cost of second choice arcs to 1; and the cost of third choice arcs to N + 1.

Find a minimum-cost flow that moves N units of flow. Assuming that your solver returns an integral solution (it should; flow LPs are totally unimodular), each student flows one unit to his assigned center. The costs minimize the number of third-choice assignments, breaking ties by the number of second-choice assignments.

like image 43
Per Avatar answered Nov 14 '22 05:11

Per