I have a graph-theoretic (which is also related to combinatorics) problem that is illustrated below, and wonder what is the best approach to design an algorithm to solve it.
Given 4 different graphs of 6 nodes (by different, I mean different structures, e.g. STAR, LINE, COMPLETE, etc), and 24 unique objects, design an algorithm to assign these objects to these 4 graphs 4 times, so that the number of repeating neighbors on the graphs over the 4 assignments is minimized. For example, if object A and B are neighbors on 1 of the 4 graphs in one assignment, then in the best case, A and B will not be neighbors again in the other 3 assignments.
Obviously, the degree to which such minimization can go is dependent on the specific graph structures given. But I am more interested in a general solution here so that given any 4 graph structures, such minimization is guaranteed as the result of the algorithm.
Any suggestion/idea of solving this problem is welcome, and some pseudo-code may well be sufficient to illustrate the design. Thank you.
Representation:
You have 24 elements, I will name this elements from A to X (24 first letters). Each of these elements will have a place in one of the 4 graphs. I will assign a number to the 24 nodes of the 4 graphs from 1 to 24.
I will identify the position of A by a 24-uple =(xA1,xA2...,xA24), and if I want to assign A to the node number 8 for exemple, I will write (xa1,Xa2..xa24) = (0,0,0,0,0,0,0,1,0,0...0), where 1 is on position 8.
We can say that A =(xa1,...xa24)
e1...e24 are the unit vectors (1,0...0) to (0,0...1)
note about the operator '.':
There are some constraints on A,...X with these notations :
Xii is in {0,1} and
Sum(Xai)=1 ... Sum(Xxi)=1
Sum(Xa1,xb1,...Xx1)=1 ... Sum(Xa24,Xb24,... Xx24)=1
Since one element can be assign to only one node.
I will define a graph by defining the neighbors relation of each node, lets say node 8 has neighbors node 7 and node 10
to check that A and B are neighbors on node 8 for exemple I nedd:
A.e8=1 and B.e7 or B.e10 =1 then I just need A.e8*(B.e7+B.e10)==1
in the function isNeighborInGraphs(A,B) I test that for every nodes and I get one or zero depending on the neighborhood.
Notations:
A=(0,0...,1,...,0)=(xa1,xa2...xa24)
B=...
...
X=(0,0...,1,...,0)
IsNeigborInGraphs(A,B)=A.e1*B.e2+... //if 1 and 2 are neigbors in one graph for exemple
L(A)=[B,B,C,E,G...] // list of neigbors of A (can repeat)
actualise(L(A)):
for element in [B,X]
if IsNeigbotInGraphs(A,Element)
L(A).append(Element)
endIf
endfor
N(A)=len(L(A))+Sum(IsneigborInGraph(A,i),i in L(A))
...
N(X)= ...
Description of the algorithm
Objective function
min(Sum(N(Z),Z=A to X)
Constraints:
Sum(Xai)=1 ... Sum(Xxi)=1
Sum(Xa1,xb1,...Xx1)=1 ... Sum(Xa24,Xb24,... Xx24)=1
You get the best solution
4.Repeat step 2 and 3, 3 more times.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With