Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

aiohttp: rate limiting requests-per-second by domain

I am writing a web crawler that is running parallel fetches for many different domains. I want to limit the number of requests-per-second that are made to each individual domain, but I do not care about the total number of connections that are open, or the total requests per second that are made across all domains. I want to maximize the number of open connections and requests-per-second overall, while limiting the number of requests-per-second made to individual domains.

All of the currently existing examples I can find either (1) limit the number of open connections or (2) limit the total number of requests-per-second made in the fetch loop. Examples include:

  • aiohttp: rate limiting parallel requests
  • aiohttp: set maximum number of requests per second

Neither of them do what I am requesting which is to limit requests-per-second on a per domain basis. The first question only answers how to limit requests-per-second overall. The second one doesn't even have answers to the actual question (the OP asks about requests per second and the answers all talk about limiting # of connections).

Here is the code that I tried, using a simple rate limiter I made for a synchronous version, which doesn't work when the DomainTimer code is run in an async event loop:

from collections import defaultdict
from datetime import datetime, timedelta
import asyncio
import async_timeout
import aiohttp
from urllib.parse import urlparse
from queue import Queue, Empty

from HTMLProcessing import processHTML
import URLFilters

SEED_URLS = ['http://www.bbc.co.uk', 'http://www.news.google.com']
url_queue = Queue()
for u in SEED_URLS:
    url_queue.put(u)

# number of pages to download per run of crawlConcurrent()
BATCH_SIZE = 100
DELAY = timedelta(seconds = 1.0) # delay between requests from single domain, in seconds

HTTP_HEADERS = {'Referer': 'http://www.google.com', 
                'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:59.0) Gecko/20100101 Firefox/59.0'}


class DomainTimer():
    def __init__(self):
        self.timer = None

    def resetTimer(self):
        self.timer = datetime.now()

    def delayExceeded(self, delay):
        if not self.timer: #We haven't fetched this before
            return True
        if (datetime.now() - self.timer) >= delay:
            return True
        else:
            return False


crawl_history = defaultdict(dict) # given a URL, when is last time crawled?
domain_timers = defaultdict(DomainTimer)

async def fetch(session, url):
    domain = urlparse(url).netloc
    print('here fetching ' + url + "\n")
    dt = domain_timers[domain]

    if dt.delayExceeded(DELAY) or not dt:
        with async_timeout.timeout(10):
            try:
                dt.resetTimer() # reset domain timer
                async with session.get(url, headers=HTTP_HEADERS) as response:
                    if response.status == 200:
                        crawl_history[url] = datetime.now()
                        html = await response.text()
                        return {'url': url, 'html': html}
                    else:
                        # log HTTP response, put into crawl_history so
                        # we don't attempt to fetch again
                        print(url + " failed with response: " + str(response.status) + "\n")
                        return {'url': url, 'http_status': response.status}

            except aiohttp.ClientConnectionError as e:
                print("Connection failed " + str(e))

            except aiohttp.ClientPayloadError as e: 
                print("Recieved bad data from server @ " + url + "\n")

    else: # Delay hasn't passed yet: skip for now & put @ end of q
        url_queue.put(url);
        return None


async def fetch_all(urls):
    """Launch requests for all web pages."""
    tasks = []
    async with aiohttp.ClientSession() as session:
        for url in urls:
            task = asyncio.ensure_future(fetch(session, url))
            tasks.append(task) # create list of tasks
        return await asyncio.gather(*tasks) # gather task responses


def batch_crawl():
    """Launch requests for all web pages."""
    start_time = datetime.now()

    # Here we build the list of URLs to crawl for this batch
    urls = []
    for i in range(BATCH_SIZE):
        try:
            next_url = url_queue.get_nowait() # get next URL from queue
            urls.append(next_url)
        except Empty:
            print("Processed all items in URL queue.\n")
            break;

    loop = asyncio.get_event_loop()
    asyncio.set_event_loop(loop)  
    pages = loop.run_until_complete(fetch_all(urls))
    crawl_time = (datetime.now() - start_time).seconds
    print("Crawl completed. Fetched " + str(len(pages)) + " pages in " + str(crawl_time) + " seconds.\n")  
    return pages


def parse_html(pages):
    """ Parse the HTML for each page downloaded in this batch"""
    start_time = datetime.now()
    results = {}

    for p in pages:
        if not p or not p['html']:
            print("Received empty page")
            continue
        else:
            url, html = p['url'], p['html']
            results[url] = processHTML(html)

    processing_time = (datetime.now() - start_time).seconds
    print("HTML processing finished. Processed " + str(len(results)) + " pages in " + str(processing_time) + " seconds.\n")  
    return results


def extract_new_links(results):
    """Extract links from """
    # later we could track where links were from here, anchor text, etc, 
    # and weight queue priority  based on that
    links = []
    for k in results.keys():
        new_urls = [l['href'] for l in results[k]['links']]
        for u in new_urls:
            if u not in crawl_history.keys():
                links.append(u)
    return links

def filterURLs(urls):
    urls = URLFilters.filterDuplicates(urls)
    urls = URLFilters.filterBlacklistedDomains(urls)
    return urls

def run_batch():
    pages = batch_crawl()
    results = parse_html(pages)
    links = extract_new_links(results)
    for l in filterURLs(links):
        url_queue.put(l)

    return results

There are no errors or exceptions thrown, and the rate-limiting code works fine in for synchronous fetches, but the DomainTimer has no apparent effect when run in async loop. The delay of one request-per-second per domain is not upheld...

How would I modify this synchronous rate limiting code to work within the async event loop? Thanks!

like image 825
J. Taylor Avatar asked Apr 07 '18 13:04

J. Taylor


1 Answers

It's hard to debug your code since it contains many unrelated stuff, it's easier to show idea on a new simple example.

Main idea:

  • write your Semaphore-like class using __aenter__, __aexit__ that accepts url (domain)
  • use domain-specific Lock to prevent multiple requests to the same domain
  • sleep before allowing next request according to domain's last request and RPS
  • track time of last request for each domain

Code:

import asyncio
import aiohttp
from urllib.parse import urlparse
from collections import defaultdict


class Limiter:
    # domain -> req/sec:
    _limits = {
        'httpbin.org': 4,
        'eu.httpbin.org': 1,
    }

    # domain -> it's lock:
    _locks = defaultdict(lambda: asyncio.Lock())

    # domain -> it's last request time
    _times = defaultdict(lambda: 0)

    def __init__(self, url):
        self._host = urlparse(url).hostname

    async def __aenter__(self):
        await self._lock

        to_wait = self._to_wait_before_request()
        print(f'Wait {to_wait} sec before next request to {self._host}')
        await asyncio.sleep(to_wait)

    async def __aexit__(self, *args):        
        print(f'Request to {self._host} just finished')

        self._update_request_time()
        self._lock.release()

    @property
    def _lock(self):
        """Lock that prevents multiple requests to same host."""
        return self._locks[self._host]

    def _to_wait_before_request(self):
        """What time we need to wait before request to host."""
        request_time = self._times[self._host]
        request_delay = 1 / self._limits[self._host]
        now = asyncio.get_event_loop().time()
        to_wait = request_time + request_delay - now
        to_wait = max(0, to_wait)
        return to_wait

    def _update_request_time(self):
        now = asyncio.get_event_loop().time()
        self._times[self._host] = now


# request that uses Limiter instead of Semaphore:
async def get(url):
    async with Limiter(url):
        async with aiohttp.ClientSession() as session:  # TODO reuse session for different requests.
            async with session.get(url) as resp:
                return await resp.text()


# main:
async def main():
    coros = [
        get('http://httpbin.org/get'),
        get('http://httpbin.org/get'),
        get('http://httpbin.org/get'),
        get('http://httpbin.org/get'),
        get('http://httpbin.org/get'),
        get('http://eu.httpbin.org/get'),
        get('http://eu.httpbin.org/get'),
        get('http://eu.httpbin.org/get'),
        get('http://eu.httpbin.org/get'),
        get('http://eu.httpbin.org/get'),
    ]

    await asyncio.gather(*coros)


if __name__ ==  '__main__':
    loop = asyncio.get_event_loop()
    try:
        loop.run_until_complete(main())
    finally:
        loop.run_until_complete(loop.shutdown_asyncgens())
        loop.close()
like image 107
Mikhail Gerasimov Avatar answered Sep 23 '22 02:09

Mikhail Gerasimov